航天推进技术研究院主办
ZHANG Tianping,ZHANG Xueer,LI Xuan.Engineering data models of performance and mass for ion and Hall electric propulsions[J].Journal of Rocket Propulsion,2022,48(01):1-13.
离子与霍尔电推进性能和质量的工程数据模型
- Title:
- Engineering data models of performance and mass for ion and Hall electric propulsions
- 文章编号:
- 1672-9374(2022)01-0001-13
- Keywords:
- performance model; mass model; ion electric propulsion; Hall electric propulsion; engineering data
- 分类号:
- V439
- 文献标志码:
- A
- 摘要:
- 为了提供航天工程任务设计时优选离子或霍尔电推进的通用对比分析方法,基于工程数据建立了包括推力器、电源处理单元、推力器选择单元、控制单元、推进剂气瓶、调压单元、流率单元、推力器支架、电缆、管路等产品的电推进的性能和质量经验模型。在此基础上通过推导建立了电推进系统干质量通用模型,模型变量参数包括推力器功率、推力器数量和推进剂量等。应用电推进模型对两种电推进的性能和工程应用效益进行了对比分析,结果表明存在针对具体任务优选电推进类型的必要性。
- Abstract:
- In order to provide a general comparative analysis method for selecting ion or Hall electric propulsion(EP)in the design of aerospace missions,empirical models of performance and mass were established for the EP components based on engineering data. The EP components include thrusters,power processing units,thruster selection units,control units,propellant tanks,pressure regulating units,flow rate units,thruster support mechanisms,cables,and pipelines. Based on these component models,an empirical model of dry mass for the EP system was established. The parameters for this system model include thruster power,the number of thrusters,and propellant mass. The performances and benefits of ion and Hall EP were compared using the system model. The results show the necessity of selecting the EP type with respect to a specific mission.
参考文献/References:
[1] 张天平,张雪儿.离子电推进的航天器应用实践及启示[J].真空与低温,2019,25(2):73-81.
[2] 康小录,杭观荣,朱智春. 霍尔电推进技术的发展与应用[J].火箭推进,2017,43(1):8-17.
KANG X L,HANG G R,ZHU Z C. Development and application of Hall electric propulsion technology[J].Journal of Rocket Propulsion,2017,43(1):8-17.
[3] 张天平,张雪儿,赵志伟,等. 离子推力器产品特性分析及研制[J].真空电子技术,2021(4):11-18.
[4] GOEBEL D M,KTZ I. Fundamentals of electric propulsion:ion and hall thruster[M].La Canada Flintridge:Jet Propulsion Laboratory,2008.
[5] GARRIGUES L,COCHE P. Electric propulsion:comparisons between different concepts[J].Plasma Physics andControlled Fusion,2011,53(12):124011.
[6] RAWLIN V K,MAJCHER G A. Mass comparisons of electric propulsion systems for NSSK of geosynchronous spacecraft[C]//27th Joint Propulsion Conference.Sacramento,California:[s.n.],1991.
[7] FRANK GULCZINSKI I,SPORES R. Analysis of Hall-effect thrusters and ion engines for orbit transfer missions[C]//32nd Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,1996.
[8] FIEHLER D,OLESON S. A comparison of electric propulsion systems for Mars exploration[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2003.
[9] KOKAN T,JOYNER C. Mission comparison of Hall effect and gridded ion thrusters utilizing various propellant options[C]//AIAA SPACE 2012 Conference & Exposition. Reston,Virginia:AIAA,2012.
[10] HOFER R,RANDOLPH T. Mass and cost model for selecting thruster size in electric propulsion systems[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2011.
[11] CHIEN K R,TIGHE W,BOND T,et al.An overview of electric propulsion at L-3 communications,electron technologies inc[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2006.
[12] BROPHY J,ETTERS M,GATES J,et al.Development and testing of the dawn ion propulsion system[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2006.
[13] HOSKINS A,AADLAND R,MECKEL N,et al.NEXT ion propulsion system production readiness[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2007.
[14] EDWARDS C H,WALLACE N C. T5 ion propulsion assembly for drag compensation on GOCE[C]//Second International GOCE User Workshop. Frascati,Italy:[s.n.],2004.
[15] GRAY H,BOLTER J,KEMPKENS K. BepiColombo –the mercury transfer module[R].IEPC2019-606.
[16] GOLLOR M,FRANKE A. Power processing units - activities in Europe 2015[R].IEPC2015-225.
[17] NISHIYAMA K,HOSODA S,UENO K,et al.Development and testing of the Hayabusa2 ion engine system[J].Transactions of the Japan Society for Aeronautical and Space Sciences,Aerospace Technology Japan,2016,14(30):131-140.
[18] NISHIDA E. Development of xenon ion engine subsystem for ETS-8[R].IEPC1999-053.
[19] ZHANG T P, TANG F J, GEN H,et al.The LIPS-200 ion electric propulsion system development for the DFH-3B satellite platform[C]//64th International Astronautical Congress. Beijing:[s.n.],2013.
[20] ZHANG T P. LIP’s electric propulsion development for Chinese satellite platform[C]//66th International Astronautical Congress. Jerusalem,Israel:[s.n.],2015.
[21] KILLINGER R,BASSNER H,KUKIES R,et al.RITA ion propulsion for ARTEMIS results close to the completion of the life test[C]//37th Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2001.
[22] BUNDESMANN C,TARTZ M,SCHOLZE F,et al.In-situ temperature,grid curvature,erosion,beam and plasma characterization of a gridded ion thruster RIT-22[R].IEPC2009-160.
[23] BOURGUIGNON E,LABILLE J M. Power supply and control unit for grided ion thruster[C]//4th International Spacecraft Propulsion Conference. Cagliari,Italy:[s.n.],2004.
[24] HRUBY P,DEMMONS N,COURTNEY D,et al.Overview of Busek electric propulsion[R].IEPC2019-926.
[25] DE GRYS K,RAYBURN C,WILSON F,et al.Mulit-mode 4.5 kW BPT-4000 hall thruster qulification status[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2003.
[26] KAY R J,FISHER J R,MEYER S D,et al.The Development of a 4.5 kW hall thruster propulsion system power processing unit[R].IEPC2001-333.
[27] JOSEPH C,CHRIS S,TODD A T,et al.13 kW advanced electric propulsion flight system development and qualification[R].IEPC2019-692.
[28] SOENDKER E,HABLITZEL S,HAYNIE C,et al.13 kW advanced electric propulsion system power processing unit development[R].IEPC2019-930.
[29] KAZEEV M N,KHODNENKO V P. Hybrid electric propulsion system on the basis of SPT and PPT[R].IEPC2019-458.
[30] LYNN P R,SANKOVIC J M,CAVENY L H. Electric propulsion demonstration module(EPDM)flight hall thruster system[R].IEPC1997-100.
[31] DAY M,MASLENNIKOV N A,ROGERS W P. SPT-100 subsystem qulification status[R].AIAA1996-2713.
[32] GNIZDOR R,KOMAROV A,MITROFANOVA O,et al.High-impulse SPT-100D thruster with discharge power of 1.0-3.0 kW[R].IEPC2017-40.
[33] DELGADO J J. Qualification of the SPT-140 for use on western spacecraft[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston,Virginia:AIAA,2014.
[34] BOURGUIGNON E,FRASELLE S. PPU Mk3 for 5 kW hall effect thrusters[R].IEPC2017-171.
[35] CORNU N,MARCHANDISE F,DARNON F,et al.PPS1 350 qualification demonstration:10 500 hrs on the ground and 5 000 hrs in flight[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2007.
[36] BOURGUIGNON E,FRASELLE S,SCALAIS T,et al.Power processing unit activities at Thales alenia space in Belgium[R].IEPC2019-584.
[37]DUCHEMIN O,RABIN J,BALIKA L,et al.Qualification status of the PPS5 000 hall thruster unit[R].IEPC2019-906.
[38] HERSCOVITZ J,LEV D R,SHOOR B,et al.VENμS – Updates on technological mission using the Israeli hall effect thruster(IHET)[R].IEPC2019-607.
[39] 田立成,赵成仁,张天平,等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J].推进技术,2017,38(11):2411-2421.
[40] MAO W,WU P A,SHEN Y,et al.Development status of a 5 kW multi-mode high specific impulse hall thruster HEP-140MF[R].IEPC2017-327.
[41] FALKNER M,NITSCHKO T,ZEMANN J,et al.Electric propulsion thruster pointing mechanism(TPM)for EUROSTAR 3 000:Design & development test results[R].IEPC2005-001.
[42] NEUGEBAUER C,JANU P,SCHERMANN R,et al.Electric propulsion pointing mechanism for Bepi Colombo[R].IEPC2011-303.
[43] FALKNER M. Ion thruster pointing mechanism(ITAM)for Artemis:Design & performace[R].IEPC1999-057.
[44] NEUGEBAUER C,JANU P,PAMMER J,et al.Electric propulsion pointing mechanism(EPPM)for the spacebus Neo platform[R].IEPC2019-243.
[45] BLANC A,CHAMPANDARD F,LAUTIER J M,et al.@BUS thruster orientation mechanism delta design[C]//13th European Space Mechanisms and Tribology Symposium.Vienna,Austria:[s.n.],2009.
[46] KUNINAKA H,NISHIYAMA K,SHIMIZU Y,et al.Flight status of cathode-less microwave discharge ion engines onboard HAYABUSA asteroid explorer[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2004.
[47] CARDIN J,COOK W,BHANDARI R. Qualification of an advanced xenon flow control module[R].IEPC2013-382.
[48] PENCIL E,PETERSON T,ANDERSON D J,et al.Overview of NASA’s electric propulsion development activities for robotic science missions[R].IEPC2011-161.
[49] PORTSMOUTH A R,HAMPSHIRE P O. Design and development of an electronic pressure regulator for use on ion propulsion systems[R].IEPC1997-033.
[50] STEPHAN J M.Electric propulsion activities for Eurostar 3 000[C]//3rd International Conference on Spacecraft Propulsion.Cannes:[s.n.],2000.
[51] O’SULLIVAN D,MCGUINNESS E,HARRIS D,et al.Mechanical pressure regulator for the xenon feed system on the alphabus platform[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virginia:AIAA,2006.
[52] SMITH P. Xenon flow control unit development and qualification programme[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2006.
[53] BUSHWAY E D,KING P T,ENGELBRECHT C,et al.A xenon flowrate controller for hall current thruster applications 1[R].IEPC2001-315.
[54] HANG G R,LI L,JIA Q Q,et al.Development of porous-metal-restrictor based xenon flow control modules[R].IEPC2019-400.
[55] SCH?F S,WIEGAND A. Future mission concepts using high power electric propulsion[C]//New Trends in Astrodynamics and Applications VI.New York:[s.n.],2011.
备注/Memo
收稿日期:2021-10-04; 修回日期:2021-11-02
基金项目:国家重点基础研究发展计划(613193)
作者简介:张天平(1963—),男,博士,研究员,研究领域为空间电推进技术及工程研制。