航天推进技术研究院主办
HUANG Jinping,XUE Jie,DOU Yu,et al.Critical speed identification of quasi-rigid rotor for turbo-pump[J].Journal of Rocket Propulsion,2022,48(03):25-31.
涡轮泵准刚性转子的临界转速识别
- Title:
- Critical speed identification of quasi-rigid rotor for turbo-pump
- 文章编号:
- 1672-9374(2022)03-0025-07
- 关键词:
- 涡轮泵 转子 重力副临界 临界转速
- 分类号:
- V43
- 文献标志码:
- A
- 摘要:
- 以Jeffcott转子为对象,从理论上介绍了重力副临界现象。在转轴有限元模型及轴承支承刚度修正的基础上,对某大推力补燃循环液体火箭发动机涡轮泵转子的前两阶临界转速和振型进行了仿真分析。通过高速运行试验,借助重力副临界识别出了转子的前两阶临界转速,并与全转速运行的识别结果及仿真结果进行了对比,1、2阶临界转速识别结果误差分别小于4.74和6.74。结果表明,高速运行时角接触轴承滚动体接触状态的轻微变化会引起支承刚度及转子系统动态响应发生变化,导致转子的运行状态波动,因此难以通过全转速范围内的响应数据来精确识别转子的临界转速 低速下滚动轴承—转子系统的运行稳定性较好,采用重力副临界方法通过低速下的运行数据进行转子临界转速的识别(尤其是1阶临界转速识别)具有足够的精度。
- Abstract:
- Taking the Jeffcott rotor system as the study object, the phenomenon of gravity subcriticality is introduced theoretically.On the basis of the finite element model of rotating shaft and the correction of bearing support stiffness, the first two critical speeds and modes of the turbo-pump of a large thrust liquid rocket engine with staged combustion cycle are simulated.Through the high speed operation test, the first two critical speeds of the rotor have been identified with the help of gravity subcriticality, and compared with the identification results and simulation results of full speed operation, the errors of the first-order and the second-order critical speed identification results were less than 4.74 and 6.74, respectively.The results show that the slight change of rolling body contacting state of angular contact bearing will change the bearing stiffness and the rotor system response at high speed, so it is difficult to accurately identify the critical speed from the response data in the full speed range.The running stability of the rolling bearing-rotor is good at low speed and the identification of rotor critical speed(especially the first-order critical speed identification)using the gravity subcritical method based on the data of low speed operation has a high accuracy.
参考文献/References:
[1] 窦唯,褚宝鑫.支承总刚度对涡轮泵转子临界转速及稳定性的影响[J].火箭推进,2014,40(1):30-38.
DOU W,CHU B X.Effect of bearing supporting stiffness on dynamic stability and critical speed of turbopump rotor system[J].Journal of Rocket Propulsion,2014,40(1):30-38.
[2] 李振将,王志峰,宋满存,等.超高速涡轮泵轴系临界转速计算方法及影响因素分析[J].燃气涡轮试验与研究,2017,30(1):58-62.
[3] 李超,刘延峰,艾丽昆.基于混合模型的转子临界转速计算[J].振动与冲击,2010,29(11):245-248.
[4] 廖明夫.航空发动机转子动力学[M].西安:西北工业大学出版社,2015.
[5] MICHEL L,GUY F.Rotordynamics prediction in engineering[M].New York:John Wiley & Sons Ltd,1997.
[6] 夏德新.高压多级氢涡轮泵转子动力学设计与试验研究[J].导弹与航天运载技术,2001(6):21-26.
[7] 王毅,林茂武,肖忠会.离心压缩机转子临界转速测试与分析[J].风机技术,2013,55(4):27-32.
[8] 蔡乾杰.小型涡扇发动机高速柔性转子系统动力学设计及试验研究[D].上海:上海交通大学,2018.
[9] 罗巧军,褚宝鑫,须村.氢涡轮泵次同步振动问题的试验研究[J].火箭推进,2014,40(5):14-19.
LUO Q J,CHU B X,XU C.Experimental research for sub-synchronous vibration problems of hydrogen turbopump[J].Journal of Rocket Propulsion,2014,40(5):14-19.
[10] 贾武同.大型水轮发电机组轴系临界转速模拟试验研究[J].机械强度,1999,21(1):7-9.
[11] 何鹏,刘占生,黄飞淋,等.拉杆转子临界转速随拉紧力变化规律试验[J].振动·测试与诊断,2014,34(4):644-649.
[12] 顾家柳,丁奎元,刘启洲,等.转子动力学[M].北京:国防工业出版社,1985.
[13] 闻邦椿.高等转子动力学:理论、技术与应用[M].北京:机械工业出版社,2000.
[14] 石清鑫,袁奇,胡永康.250 t高速动平衡机摆架的动刚度分析[J].机械工程学报,2011,47(1):75-79.
[15] 李玲玲,王克明.某型航空发动机后支承动刚度的有限元计算[J].沈阳航空工业学院学报,2007,24(3):5-7.
[16] 《航空发动机设计手册》总编委会.航空发动机设计手册(第19册):转子动力学及整机振动[M].北京:航空工业出版社,2000.
[17] JANG G,JEONG S W.Vibration analysis of a rotating system due to the effect of ball bearing waviness[J].Journal of Sound and Vibration,2004,269(3/4/5):709-726.
[18] 邓四二,王燕霜,李新宁.轴承预紧力与系统固有频率关系的试验[J].航空动力学报,2010,25(8):1883-1887.
[19] 赵耿,刘保国,冯伟,等.轴承预紧力对转子系统静动态特性的影响[J].动力学与控制学报,2018,16(6):520-525.
[20] BENTLY D E,CHARLES T H.Fundamentals of rotating machinery diagnostics[M].Minden,NV:Bently Pressurized Bearing Press,2002.
备注/Memo
收稿日期:2021-04-29 修回日期:2021-09-09
基金项目:科工局稳定支持项目(HTKJ2020KL011007) 基础研究项目(11S2020KT12)
作者简介:黄金平(1977—),男,博士,研究员,研究领域为液体火箭发动机结构强度分析、转子动力学。