航天推进技术研究院主办
LIU Shijie,WANG Zhao,LIU Jichao,et al.Simulation analysis of 304SS full-life cyclic mechanical behavior based on Chaboche hardening model[J].Journal of Rocket Propulsion,2022,48(03):40-49.
基于Chaboche硬化模型的304SS全寿命循环力学行为仿真分析
- Title:
- Simulation analysis of 304SS full-life cyclic mechanical behavior based on Chaboche hardening model
- 文章编号:
- 1672-9374(2022)03-0040-10
- Keywords:
- 304 stainless steel Chaboche hardening model yield plateau strain controlled experiment simulation
- 分类号:
- V250.3,O341
- 文献标志码:
- A
- 摘要:
- 以研究Chaboche硬化模型对低循环载荷下304SS全寿命循环力学行为仿真的可行性为目的。首先,结合试验数据与仿真结果,分析导致Chaboche随动/混合硬化模型无法模拟屈服平台效应问题的原因 然后,对可以模拟前四分之一个循环和稳定迟滞环的模型进行分析,据此给出问题的解决方案 最后,程序验证Chaboche硬化模型对304SS在±0.8应变控制下完整循环力学响应模拟的可行性。结果表明:①304SS具有明显的屈服平台效应,它的初始屈服应力为200 MPa左右,而屈服强度达到400 MPa,这是无法利用一套Chaboche硬化模型参数对全寿命循环进行模拟的主要原因 ②304SS以±0.9应变范围为界表现出Masing/Non-Masing效应,利用±0.8应变控制循环曲线确定的304SS Ramberg-Osgood模型常数n0=34.713,ε0=0.002 24,σ0=430 MPa,该组参数不适用于±3.0高循环应变载荷控制的力学行为曲线 ③适合304SS前四分之一个循环的Chaboche随动硬化模型参数是:C1=744 639 MPa,χ1=155 193,C2=71 633 MPa,χ2=3 014,C3=20 608 MPa,χ3=1 051,σy=380 MPa。由于背应力的差异,无法对前四分之一个循环和后继循环分别采用不同的硬化模型参数来模拟304SS全寿命循环的应力应变曲线。研究结果可为304SS结构件的力学行为仿真分析提供参考。
- Abstract:
- The purpose of this paper is to study the feasibility of the Chaboche hardening model to simulate the mechanical behavior of 304SS full life cycle under low cyclic load.Firstly, combined with the experimental data and simulation results, the reasons why the Chaboche follow-up/hybrid hardening model cannot simulate the yielding platform effect are analyzed.Then, the model that can simulate the first quarter cycle and the stable hysteresis loop is analyzed, and the solution of the problem is given accordingly.Finally, the feasibility of the Chaboche hardening model for simulating the full-cycle mechanical response of 304SS under±0.8 strain control is verified by the program.The results show that:① 304SS has an obvious yield plateau effect.Its initial yield stress is about 200 MPa and its yield strength reaches 400 MPa, which is the main reason why a set of the Chaboche hardening model parameters cannot be used to simulate the full life cycle ② 304SS shows the Masing/Non-Masing effect with the±0.9 strain range as the boundary.The 304SS Ramberg-Osgood model constants determined by the±0.8 strain control cycle curve are n0=34.713, ε0=0.002 24, σ0=430 MPa.This group of parameters is not suitable for the mechanical behavior curve of±3.0 high cyclic strain load control ③ The parameters of the Chaboche kinematic hardening model suitable for the first quarter cycle of 304SS are:C1=744 639 MPa, χ1=155 193, C2=71 633 MPa, χ2=3 014, C3=20 608 MPa, χ3=1 051, σy=380 MPa.Due to the difference in back stress, it is impossible to use different hardening model parameters for the first quarter cycle and subsequent cycles to simulate the stress-strain curve of 304SS full life cycle.This paper can provide a reference for the simulation analysis of mechanical behavior for 304SS structural components.
参考文献/References:
[1] PRAGER W.A new method of analyzing stresses and strains in work-hardening plastic solids[J].Journal of Applied Mechanics,1956,23(4):493-496.
[2] FREDERICK C O,ARMSTRONG P J.A mathematical representation of the multiaxial Bauschinger effect[J].Materials at High Temperatures,2007,24(1):1-26.
[3] CHABOCHE J L.A review of some plasticity and viscoplasticity constitutive theories[J].International Journal of Plasticity,2008,24(10):1642-1693.
[4] CHABOCHE J L,KANOUT?P,AZZOUZ F.Cyclic inelastic constitutive equations and their impact on the fatigue life predictions[J].International Journal of Plasticity,2012,35:44-66.
[5] AGIUS D,KAJTAZ M,KOUROUSIS K I,et al.Sensitivity and optimisation of the Chaboche plasticity model parameters in strain-life fatigue predictions[J].Materials & Design,2017,118:107-121.
[6] BADNAVA H,PEZESHKI S M,NEJAD K F,et al.Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method[J].Journal of Mechanical Science & Technology,2012,26(10):3067-3072.
[7] CHABOCHE J L,CORDIER G.Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel[EB/OL].https://www.researchgate.net/publication/310478904_Modelization_of_the_strain_memory_effect_on_the_cyclic_hardening_of_316_stainless_steel,1979.
[8] LIU S J,LIANG G Z.Optimization of Chaboche kinematic hardening parameters by using an algebraic method based on integral equations[J].Journal of Mechanics of Materials and Structures,2017,12(4):439-455.
[9] PHAN V T,MESSNER M C,SHAM T L.A unified engineering inelastic model for 316H stainless steel[C]//ASME 2019 Pressure Vessels & Piping Conference.New York:ASME,2019.
[10] LIU S J,LIANG G Z,YANG Y C.A strategy to fast determine Chaboche elasto-plastic model parameters by considering ratcheting[J].International Journal of Pressure Vessels and Piping,2019,172:251-260.
[11] LI X,HOLDSWORTH S R,MAZZA E,et al.The investigation of primary creep regeneration for 10Cr martensitic steel:unified constitutive modelling[J].International Journal of Mechanical Sciences,2021,190:106044.
[12] ZHOU J B,BARRETT R A,LEEN S B.A physically-based method for predicting high temperature fatigue crack initiation in P91 welded steel[J].International Journal of Fatigue,2021,153:106480.
[13] MEYER K A,MENZEL A.A distortional hardening model for finite plasticity[J].International Journal of Solids and Structures,2021,232:111055.
[14] CHABOCHE J L.Time-independent constitutive theories for cyclic plasticity[J].International Journal of Plasticity,1986,2(2):149-188.
[15] CHABOCHE J L.On some modifications of kinematic hardening to improve the description of ratchetting effects[J].International Journal of Plasticity,1991,7(7):661-678.
[16] SIVAPRASAD S,PAUL S K,DAS A,et al.Cyclic plastic behaviour of primary heat transport piping materials:influence of loading schemes on hysteresis loop[J].Materials Science and Engineering:A,2010,527(26):6858-6869.
[17] PAUL S K,SIVAPRASAD S,DHAR S,et al.Key issues in cyclic plastic deformation:experimentation[J].Mechanics of Materials,2011,43(11):705-720.
[18] DEY R,TARAFDER S,SIVAPRASAD S.Influence of phase transformation due to temperature on cyclic plastic deformation in 304LN stainless steel[J].International Journal of Fatigue,2016,90:148-157.
[19] OKOROKOV V,GORASH Y,MACKENZIE D,et al.New formulation of nonlinear kinematic hardening model,Part I:A Dirac delta function approach[J].International Journal of Plasticity,2019,122:89-114.
[20] ABDEL-KARIM M.An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratchetting[J].International Journal of Plasticity,2010,26(5):711-730.
备注/Memo
收稿日期:2021-01-30 修回日期:2021-04-11
基金项目:中国航天推进技术研究院可靠性保证中心研究课题
作者简介:刘士杰(1985—),男,博士,高级工程师,研究领域为液体火箭发动机可重复使用性设计与仿真方法、火箭发动机部件疲劳寿命理论与试验。
通信作者:梁国柱(1966—),男,教授,研究领域为火箭发动机设计、仿真与优化集成,火箭发动机点火与燃烧动态过程试验。