航天推进技术研究院主办
QIAN Chen,GAO Xinni,HU Baolin,et al.Measurement method of nozzle atomization angle based on image processing[J].Journal of Rocket Propulsion,2022,48(03):63-70.
基于图像处理的喷嘴雾化角测试方法
- Title:
- Measurement method of nozzle atomization angle based on image processing
- 文章编号:
- 1672-9374(2022)03-0063-08
- 分类号:
- V238
- 文献标志码:
- A
- 摘要:
- 针对喷嘴雾化角测量,开展基于图像处理的喷嘴雾化角测量方法研究,设计搭建了采用远心透镜光学成像测量系统,研究基于图像灰度阈值分割、边缘识别和角度分析的图像处理算法,通过对喷雾图像进行处理得到雾化角与偏斜角。为验证系统测量精度,采用标准角度块进行测量,角度测量最大相对误差为1.01,测量不确定度优于0.10°。在此基础上,将上述光学成像测量系统应用于A、B、C这3种型号喷嘴雾化角测试,结果显示:该方法能够有效获得清晰的图像,利用阈值分割和边缘识别算法能够获得雾化角与偏斜角。A、B、C这3种典型单个喷嘴多次测试雾化角的测量不确定度分别为0.806°、0.279°、0.624°,偏斜角的测量不确定度为0.207°、0.402°、0.620° A、B、C型不同喷嘴多次测试雾化角平均测量不确定度为0.659°、0.427°和1.291°,偏斜角平均测量不确定度平均值为0.389°、0.231°和0.487°。因此,基于图像处理的喷嘴雾化角测试方法可为评判喷嘴雾化性能提供直观有效依据。
- Abstract:
- Aiming at the measurement of nozzle atomization angle, the measurement method of nozzle atomization angle based on image processing is studied.A telecentric lens optical imaging measurement system is designed and built,and the image processing algorithm based on image gray threshold segmentation, edge recognition and angle analysis is studied.The atomization angle and deflection angle are obtained by processing the spray image.In order to verify the measurement accuracy of the system, the standard angle block is used for measurement.The maximum relative error of angle measurement is 1.01 and the measurement uncertainty is better than 0.10°.On this basis, this optical imaging measurement system is applied to the atomization angle test of A, B and C three types of nozzles.The results show that the method can effectively obtain clear images, and the atomization angle and deflection angle can be obtained by threshold segmentation and edge recognition algorithm.The measurement uncertainty of atomization angle for three typical single nozzles A, B and C is 0.806°, 0.279° and 0.624°,and the measurement uncertainty of deflection angle is 0.207°, 0.402° and 0.620°,respectively.The average measurement uncertainty of atomization angle for A, B and C nozzles is 0.659°, 0.427° and 1.291°, and the average measurement uncertainty of deflection angle is 0.389°, 0.231° and 0.487°, respectively.Therefore, the test method of nozzle atomization angle based on image processing can provide intuitive and effective basis for evaluating nozzle atomization performance.
参考文献/References:
[1] 周帅,林磊,杜大华,等.液体火箭发动机对接焊管道振动疲劳性能研究[J].火箭推进,2021,47(3):90-97.
ZHOU S,LIN L,DU D H,et al.Study on vibration fatigue of butt welded pipe of liquid rocket engine[J].Journal of Rocket Propulsion,2021,47(3):90-97.
[2] 谢福寿,杜飞平,王晓峰,等.液氧煤油补燃发动机泵间管路高温富氧燃气掺混冷凝特性数值研究[J].推进技术,2021,42(7):1544-1552.
[3] 孙迎霞,王浩,陈剑,等.液体推进剂的新型加注方法[J].火箭推进,2019,45(6):60-65.
SUN Y X,WANG H,CHEN J,et al.A new injection method for liquid propellant[J].Journal of Rocket Propulsion,2019,45(6):60-65.
[4] 田畅.X型旋流压力喷嘴雾化参数及降尘效率预测模型[D].湘潭:湖南科技大学,2019.
[5] 刘祺,夏津,黄忠,等.航空发动机离心式喷嘴宏观喷雾特性[J].推进技术,2021,42(2):362-371.
[6] 施智雄,潘科玮,平力,等.喷嘴雾化参数轨迹图像法测量实验研究[J].化工学报,2020,71(8):3527-3534.
[7] 杨国华,王凯,雷凡培,等.螺旋形实心锥喷嘴雾化特性试验研究[J].热能动力工程,2021,36(3):77-86.
[8] 雒晨辉,黄靖龙,孙世彪,等.司马煤业有限公司掘进机外喷雾喷嘴雾化特性及降尘性能研究[J].采矿技术,2022,22(1):166-170.
[9] 周进华.小油量气泡雾化喷嘴的试验研究[D].武汉:华中科技大学,2011.
[10] 马牙川.基于FPGA的智能工业相机系统的研究[D].杭州:浙江大学,2016.
[11] 许敬华.基于远心镜头的视觉齿轮倒角测量方法研究[D].天津:天津科技大学,2016.
[12] 王明威.基于双远心镜头的虹膜图像采集方法[D].沈阳:沈阳工业大学,2016.
[13] STEGER C,ULRICH M.A camera model for line-scan cameras with telecentric lenses[J].International Journal of Computer Vision,2021,129(1):80-99.
[14] 王洪益.一种远心镜头的标定方法及精度研究[J].光学技术,2018,44(3):359-364.
[15] HAN H H,DENG H Y,DONG Q,et al.An advanced OTSU method integrated with edge detection and decision tree for crack detection in highway transportation infrastructure[J].Advances in Materials Science and Engineering,2021,2021:9205509.
[16] 娄联堂,何慧玲.基于图像灰度变换的OTSU阈值优化算法[J].中南民族大学学报(自然科学版),2021,40(3):325-330.
[17] CHEN X L,LI J,HUANG S W,et al.An automatic concrete crack-detection method fusing point clouds and images based on improved OTSUs algorithm[J].Sensors,2021,21(5):1581.
[18] LI N,LV X,XU S K,et al.An improved water surface images segmentation algorithm based on the OTSU method[J].Journal of Circuits,Systems and Computers,2020,29(15):2050251.
[19] 张婷婷.基于分数阶理论与最小二乘法的复杂背景车道线检测研究[D].西安:长安大学,2017.
[20] 樊德金,杨龙兴,丁力,等.基于改进最小二乘法的焊缝直线提取研究[J].热加工工艺,2018,47(15):217-220.
备注/Memo
收稿日期:2021-12-08 修回日期:2022-04-19
基金项目:国家自然科学基金(51806144)
作者简介:钱晨(1998—),男,硕士,研究领域为气液两相流测量方法。
通信作者:杨斌(1985—),男,博士,副教授,研究领域为多相流与燃烧测量方法。