航天推进技术研究院主办
ZHANG Chunwei,CHAI Dongdong,MA Junqiang,et al.Review on development of cryogenic propellant densification technology[J].Journal of Rocket Propulsion,2023,49(03):1-14.
低温推进剂致密化技术的发展综述
- Title:
- Review on development of cryogenic propellant densification technology
- 文章编号:
- 1672-9374(2023)03-0001-14
- 分类号:
- V511+.6
- 文献标志码:
- A
- 摘要:
- 采用深度过冷等方式对低温推进剂进行致密化,可显著改善其热力学性能,包括密度提升、气液饱和压力降低和显冷量增加等,对减小箭体尺寸和增强低温推进剂应用便利性具有重要促进作用。选取液态甲烷、液氧和液氢3种典型低温推进剂作为研究对象,首先对深度过冷前后的低温推进剂物性参数进行对比,深入了解致密化产生的有益效果; 随后,广泛综述低温推进剂致密化的国内外发展和应用现状,对其技术特征进行归纳和总结; 最后,提出适合我国国情的低温推进剂致密化发展建议,包括开展低温推进剂组合同步致密化、研发高性能真空压缩机以及设计新型加注流程等,以期为我国低温推进剂致密化技术未来发展提供理论参考。
- Abstract:
- Densification by means of deep supercooling can significantly improve the thermodynamic properties of cryogenic propellants, including increased density, reduced gas-liquid saturation pressure, and increased sensible cooling capacity, which has an important role in reducing the rocket size and enhancing the application convenience of cryogenic propellants. In this paper, three typical cryogenic propellants, liquid methane, liquid oxygen and liquid hydrogen, were selected as the research objects. Firstly, the physical parameters of the cryogenic propellants before and after deep subcooling were compared to gain an in-depth understanding of the beneficial effects of densification. Then, the development and application status of cryogenic propellant densification at home and abroad were reviewed, and its technical characteristics were summarized. Finally, some suggestions for the development of cryogenic propellant densification suitable for China's national conditions were put forward, including the simultaneous densification of cryogenic propellant combination, the development of high-performance vacuum compressors and the design of new filling process processes, etc.The results canprovide theoretical reference for the future development of cryogenic propellant densification technology.
参考文献/References:
[1] 王磊,厉彦忠,马原,等.长期在轨贮存低温推进剂过冷度获取方案研究[J].航空动力学报,2015,30(11):2794-2802.
[2] 孙强,雷刚,徐元元,等.致密化液甲烷/液氧作为推进燃料性能评价分析[J].低温工程,2022(2):7-13.
[3] 张浩,王帅,耑锐,等.过冷度对飞行器贮箱热力学排气系统性能的影响[J].火箭推进,2020,46(4):74-81.
ZHANG H,WANG S,ZHUAN R,et al.Effect of subcooled degree on performance of thermodynamic vent system in spacecraft tank[J].Journal of Rocket Propulsion,2020,46(4):74-81.
[4] 王妍卉,周炳红.微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响[J].空间科学学报,2020,40(3):394-400.
[5] 尹亮,刘伟强.液氧/甲烷发动机研究进展与技术展望[J].航空兵器,2018,25(4):21-27.
[6] 任建华,雷刚,谢福寿,等.液氧大流量深度过冷方案对比分析[J].低温工程,2021(6):22-28.
[7] 谢福寿,厉彦忠,王磊,等.低温推进剂过冷技术研究[J].航空动力学报,2017,32(3):762-768.
[8] CHO N,KWON O,KIM Y,et al.Investigation of helium injection cooling to liquid oxygen propellant chamber[J].Cryogenics,2006,46(2/3):132-142.
[9] RAMESH T,THYAGARAJAN K.Performance studies on sub-cooling of cryogenic liquids used for rocket propulsion using helium bubbling[J].International Journal of Engineering and Technology,2014,6(1):58-65.
[10] 姚岚,张鹏,雷刚.浆氮固相浓度实验测量研究及应用于浆氢的分析研究[J].低温与超导,2016,44(11):42-47.
[11] OHIRA K.Study of production technology for slush hydrogen[C]//AIP Conference Proceedings.Anchorage,Alaska:AIP,2004.
[12] FUJIWARA H,YATABE M,TAMURA H,et al.Experiment on slush hydrogen production with the auger method[J].International Journal of Hydrogen Energy,1998,23(5):333-338.
[13] NIENDORF L R,NOICHL O J.Research of production techniques for obtaining over 50% solid in slush hydrogen[Z].1965.
[14] BRUNNHOFER K,PARAGINA A S,SCHEERER M,et al.Slush hydrogen and slush nitrogen production and characterization[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2006.
[15] 雷刚,姚岚,张鹏.浆氢的制备及应用研究综述[J].低温与超导,2016,44(11):35-41.
[16] WAYNERT J A,BARCLAY J A,CLAYBAKER C,et al.Production of slush hydrogen using magnetic refrigeration[C]//7th Intersociety Cryogenics Symposium.[S.l.]: [s.n.],1989.
[17] 安刚,岳婷,马晨辉.一种低温胶体的制备方法及工艺的初步研究[C]//第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集.北京:中国制冷学会,2007.
[18] 张楠,孙慧娟.低温液体火箭发动机重复使用技术分析[J].火箭推进,2020,46(6):1-12.
ZHANG N,SUN H J.Analysis on the reusable cryogenic liquid rocket engine technology[J].Journal of Rocket Propulsion,2020,46(6):1-12.
[19] 李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考[J].火箭推进,2017,43(1):1-7.
LI B,ZHANG X P,GAO Y S.Consideration on development of reusable liquid rocket engine in China[J].Journal of Rocket Propulsion,2017,43(1):1-7.
[20] 潘一力,周海清,程诚.3 000 N液氧/液甲烷发动机方案与试验研究[J].火箭推进,2018,44(6):7-13.
RAN Y L,ZHOU H Q,CHENG C.Scheme and test of 3 000 N liquid oxygen and liquid methane rocket engine[J].Journal of Rocket Propulsion,2018,44(6):7-13.
[21] 杨开,才满瑞.国外液氧/甲烷发动机的最新进展[J].中国航天,2017(10):14-19.
[22] JOHNSON W,TOMSIK T,SMUDDE T,et al.A densified liquid methane delivery system for the Altair ascent stage[C]//SpaceOps 2010 Conference.Reston,Virginia:AIAA,2010.
[23] 陈强,孙庆国,王天祥,等.基于液氮冷源的液态甲烷过冷加注工艺[J].航空动力学报,2020,35(5):956-962.
[24] 马原,高炎,高强,等.液氧/液甲烷低温推进剂深度过冷加注实验研究[J].西安交通大学学报,2022,56(9):134-141.
[25] 李梦竹,张登攀,蒋榕培,等.火星液氧/甲烷推进剂原位制备技术研究进展[J].宇航总体技术,2019,3(3):59-70.
[26] 孙怡鹏,唐强,刘海飞,等.液氧深度过冷流程设计研究[J].低温与超导,2020,48(10):18-22.
[27] 邵业涛,罗庶,王浩苏,等.低温推进剂深度过冷加注技术研究及对运载火箭性能影响分析[J].宇航总体技术,2019,3(2):18-25.
[28] TOMSIK T,MEYER M.Liquid oxygen propellant densification production and performance test results with a large-scale flight-weight propellant tank for the X33 RLV[EB/OL].https://www.semanticscholar.org/paper/Liquid-Oxygen-Propellant-Densification-Production-a-Tomsik-Meyer/494e5d28d0be3b624d88f9377005d2619cc
0b47a,2010.
[29] SIPPEL M,STAPPERT S,KOCH A.Assessment of multiple mission reusable launch vehicles[J].Journal of Space Safety Engineering,2019,6(3):165-180.
[30] 胡旭东,宋扬.液氧全过冷加注在新一代运载火箭加注工作中的应用价值[J].导弹与航天运载技术,2018(4):87-92.
[31] 谢福寿,雷刚,王磊,等.过冷低温推进剂的性能优势及其应用前景[J].西安交通大学学报,2015,49(5):16-23.
[32] 谭宏博,吴昊,寇西平,等.喷射泵-液环泵联合抽空液氧过冷方案仿真研究[J].低温工程,2021(5):61-67.
[33] 孙怡鹏,刘海飞,黄福友,等.液氧深度过冷实验研究[C]//航天七网(低温专业)2020年学术交流会论文集.[S.l.]:[s.n.],2020.
[34] 江芋叶,张鹏.浆氢与浆氮技术研究现状[J].低温与超导,2007,35(3):205-214.
[35] OHIRA K.Development of density and mass flow rate measurement technologies for slush hydrogen[J].Cryogenics,2004,44(1):59-68.
[36] CARNEY R R.“slush hydrogen” production and handling as a fuel for space projects[M]//TIMMERHAUS K D.Advances in cryogenic engineering.Boston,MA:Springer,
1964.
[37] DEWITT R,HARDY T,WHALEN M V,et al.Slush hydrogen(SLH2)technology development for application to the national aerospace plane(NASP)[EB/OL].https://www.semanticscholar.org/paper/Slush-Hydrogen-(SLH2)-Technology-Development-for-to-Dewitt-Hardy/cb0d2d458
2936f7e310ab68e5e3f5a6d1938be6d,1990.
[38] HARDY T,WHALEN M.Slush hydrogen propellant production,transfer,and expulsion studies at the NASA K-Site Facility[C]//Conference on Advanced SEI Technologies.Reston,Virginia:AIAA,1991.
[39] NOTARDONATO W U.Operational testing of densified hydrogen using G-M refrigeration[C]//AIP Conference Proceedings.Anchorage,Alaska:AIP,2004.
[40] NOTARDONATO W,SWANGER A,JUMPER K,et al.Large scale production of densified hydrogen using integrated refrigeration and storage[EB/OL].https://www.semanticscholar.org/paper/Large-Scale-Production-of-Densified-Hydrogen-Using-Notardonato-Swanger/8dbfcb24b2320
3efa76a2a6c901f49f2b0b7e8d2,2017.
[41] G?RSU S,SHERIFF S A,VEZIROCG ˇLU T N,et al.Review of slush hydrogen production and utilization technologies[J].International Journal of Hydrogen Energy,1994,19(6):491-496.
[42] 禹天福,吴志坚.美国浆氢的研究与应用[J].低温工程,2004(4):11-17.
[43] 谢福寿,夏斯琦,朱宇豪,等.液氢/固氢混合物(氢浆)制备可视化试验研究[J].西安交通大学学报,2022,56(6):26-33.
[44] EWART R O,DERGANCE R H.Cryogenic propellant densification study[R].NASA CR-159438.
[45] 张鹏,石新杰.浆氢在水平圆管内流动的数值模拟[J].化工学报,2014,65(S2):38-44.
[46] PARK Y M.Literature research on the production,loading,flow,and heat transfer of slush hydrogen[J].International Journal of Hydrogen Energy,2010,35(23):12993-13003.
[47] 禹天福,许宏.美国凝胶液氢(胶氢)的研究[J].导弹与航天运载技术,2002(4):59-65.
[48] DANEY D E,RAPIAL A S.Preparation and characterization of slush hydrogen and nitrogen gels[M]//TIMMERHAUS K D.Advances in Cryogenic Engineering.Boston,MA:Springer,1995.
[49] STARKOVICH J,ADAMS S,PALASZEWSKI B.Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum[C]//32nd Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1996.
[50] STARKOVICH J,PALASZEWSKI B.Technology for gelled liquid cryogenic propellants:Metallized hydrogen/aluminum[C]//29th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1993.
[51] 安刚,曹建,马晨辉.低温胶体密度测量装置的初步研制[C]//第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集.北京:中国制冷学会,2007.
[52] 雷刚,苏嘉南,刘海生,等.胶氢制备技术研究[J].低温工程,2017(5):6-11.
相似文献/References:
[1]于海磊,陈锋,郑勤生,等.低温推进剂液位监测系统设计[J].火箭推进,2010,36(03):54.
Yu Hailei,Chen Feng,Zheng Qinsheng,et al.Design of monitoring system for
cryogenic propellant level[J].Journal of Rocket Propulsion,2010,36(03):54.
[2]曹文庆,谭海林,李伟.低温发动机试验推进剂人口温度控制[J].火箭推进,2009,35(03):52.
Cao Wenqing,Tan Hailin,Li Wei.Propellant inlet temperature control
for cryogenic rocket engine tests[J].Journal of Rocket Propulsion,2009,35(03):52.
[3]杨永强,刘站国,徐浩海,等.液氧煤油发动机低温组元两相充填过程研究[J].火箭推进,2006,32(02):11.
Yang Yongqiang,Liu Zhanguo,Xu Haohai.Research on two-phase filling process of cryogenic propellant for a LOX/Kerosene LRE[J].Journal of Rocket Propulsion,2006,32(03):11.
[4]薛国宇,陈志坚,王德忠,等.低温表面张力贮箱研究[J].火箭推进,2005,31(03):26.
Xue Guoyu,Chen Zhijian,Wang Dezhong.Study on cryogenic surface tension propellant tank[J].Journal of Rocket Propulsion,2005,31(03):26.
[5]段文浩,张佳,王虹玥.数字式低温液位测量系统[J].火箭推进,2017,43(03):79.
DUAN Wenhao,ZHANG Jia,WANG Hongyue.Digital measurement system for cryogenic liquid level[J].Journal of Rocket Propulsion,2017,43(03):79.
[6]马原,董妍,李剑,等.荷兰斜纹筛网有效孔隙直径的数值分析与模型构建[J].火箭推进,2023,49(03):26.
MA Yuan,DONG Yan,LI Jian,et al.Numerical analysis and model establishment on effective pore diameter of Dutch twill weave[J].Journal of Rocket Propulsion,2023,49(03):26.
备注/Memo
收稿日期:2022-10-18; 修回日期:2022-11-16
基金项目:国家重点项目
作者简介:张春伟(1992—),男,博士,工程师,研究领域为低温推进剂热管理、致密化及地外制备。