航天推进技术研究院主办
MA Yuan,DONG Yan,LI Jian,et al.Numerical analysis and model establishment on effective pore diameter of Dutch twill weave[J].Journal of Rocket Propulsion,2023,49(03):26-33.
荷兰斜纹筛网有效孔隙直径的数值分析与模型构建
- Title:
- Numerical analysis and model establishment on effective pore diameter of Dutch twill weave
- 文章编号:
- 1672-9374(2023)03-0026-08
- Keywords:
- cryogenic propellant; orbital gas-liquid separation; Dutch twill weave; bubble point pressure; effective pore diameter
- 分类号:
- V511+.6
- 文献标志码:
- A
- 摘要:
- 泡破压力是表征筛网通道式液体获取装置气液分离性能的关键指标之一,而筛网有效孔隙直径是准确预测泡破压力的核心参数。面对现有研究仍主要基于实验测量方法获得有效孔隙直径的局限性,通过构建荷兰斜纹型筛网(Dutch twill weave, DTW)真实结构的三维几何模型,获得了筛网内部孔隙流域的结构变化特征。基于表面张力模型与压力边界设置开展了特征喉部截面泡破压力数值仿真,提出了基于筛网几何结构参数的有效孔隙直径计算模型。结果表明:决定DTW泡破压力的特征喉部截面位于z=±(rw+rs)附近,具有近四边形的封闭边界。针对特征喉部截面,通过泡破压力数值仿真反推获得的有效孔隙直径与文献实验数据相对误差小于6%,所提出的有效孔隙直径模型预测结果与文献实验数据同样吻合良好,平均误差不超过10%,均能够实现不依赖于实验测量的筛网有效孔隙直径准确预测,可为筛网泡破压力性能分析及液体获取装置设计优化提供重要支撑。
- Abstract:
- Bubble point pressure is one of the key indexes to characterize the gas-liquid separation performance of the screen channel liquid acquisition devices, and the effective pore diameter of the screen is the core parameter to accurately predict the bubble point pressure. In the face of the limitation that the existing research is still mainly based on the experimental measuring method to obtain the effective pore diameter of screens, the structural characteristics of the fluid domain within the screen are obtained by constructing the three-dimensional geometry model of the real structure of Dutch twill weave(DTW)in this paper. The numerical study on the bubble point pressure at the characteristic throat is conducted based on the surface tension model and pressure boundary setting. A calculation model of effective pore diameter based on geometrical structure parameters of screen is proposed. The results show that the characteristic throat, which determines the bubble point pressure of DTW, is located near z=±(rw+rs)and is of a nearly closed quadrilateral boundary. In view of the characteristic throat section, the prediction of the effective pore diameter derived from the numerical simulation of bubble point pressure, is of a relative error less than 6% compared to the experimental data in literatures. Through the proposed effective pore diameter model, the predicted results are also in good agreement with literatures' experimental data, and the average error is less than 10%. The accurate prediction of thescreen's effective pore diameter can be achieved and is independent of the experimental measurement, which could provide important support for the performance analysis of screen's bubble point pressure and the design optimization of liquid acquisition devices.
参考文献/References:
[1] HARTWIG J W.Propellant management devices for low-gravity fluid management:Past,present,and future applications[J].Journal of Spacecraft and Rockets,2017,54(4):808-824.
[2] 马原,厉彦忠,王磊,等.低温推进剂在轨加注技术与方案研究综述[J].宇航学报,2016,37(3):245-252.
[3] MA Y,ZIMNIK D,DREYER M,et al.Investigation on cryo-wicking performance within metallic weaves under superheated conditions for screen channel liquid acquisition devices(LADs)[J].International Journal of Heat and Mass Transfer,2019,141:530-541.
[4] 马原,陈虹,邢科伟,等.低温推进剂网幕通道式液体获取装置性能研究进展[J].制冷学报,2019,40(3):1-7.
[5] KUDLAC M,JURNS J.Screen channel liquid acquisition devices for liquid oxygen[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2006.
[6] JURNS J,MCQUILLEN J,GABY J,et al.Bubble point measurements with liquid methane of a screen channel capillary liquid acquisition device[R].NASA/TM-215494.
[7] JURNS J M,HARTWIG J W.Liquid oxygen liquid acquisition device bubble point tests with high pressure LOx at elevated temperatures[J].Cryogenics,2012,52(4/5/6):283-289.
[8] HARTWIG J,MANN J A,DARR S R.Parametric analysis of the liquid hydrogen and nitrogen bubble point pressure for cryogenic liquid acquisition devices[J].Cryogenics,2014,63:25-36.
[9] HARTWIG J,MCQUILLEN J.Screen channel liquid-acquisition-device bubble point tests in liquid methane[J].Journal of Thermophysics and Heat Transfer,2014,29(2):364-375.
[10] HARTWIG J W.Screen channel liquid acquisition device bubble point tests in liquid nitrogen[J].Cryogenics,2016,74:95-105.
[11] HARTWIG J,CHATO D,MCQUILLEN J.Screen channel LAD bubble point tests in liquid hydrogen[J].International Journal of Hydrogen Energy,2014,39(2):853-861.
[12] MESEROLE J S,JONES O S.Pressurant effects on cryogenic liquid acquisition devices[J].Journal of Spacecraft and Rockets,1993,30(2):236-243.
[13] SAVAS A J,HARTWIG J W,MODER J P.Thermal analysis of a cryogenic liquid acquisition device under autogenous and non-condensable pressurization schemes[J].International Journal of Heat and Mass Transfer,2014,74:403-413.
[14] CONRATH M,DREYER M.Gas breakthrough at a porous screen[J].International Journal of Multiphase Flow,2012,42:29-41.
[15] CONRATH M,SMIYUKHA Y,FUHRMANN E,et al.Double porous screen element for gas-liquid phase separation[J].International Journal of Multiphase Flow,2013,50:1-15.
[16] HARTWIG J W,KAMOTANI Y.The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J].International Journal of Heat and Mass Transfer,2016,101:502-516.
[17] CAMAROTTI C,DENG O,DARR S,et al.Room temperature bubble point,flow-through screen,and wicking experiments for screen channel liquid acquisition devices[J].Applied Thermal Engineering,2019,149:1170-1185.
[18] SYMONS E.Wicking of liquids in screens[EB/OL].https://www.semanticscholar.org/paper/Wicking-of-liquids-in-screens-Symons/80e01bf3b2c22893e013cca27187
200846707724,1974.
[19] HARTWIG J,MANN J A.A predictive bubble point pressure model for porous liquid acquisition device screens[J].Journal of Porous Media,2014,17(7):587-600.
[20] HARTWIG J W,KAMOTANI Y.The static reseal pressure model for cryogenic screen channel liquid acquisition devices[J].International Journal of Heat and Mass Transfer,2016,99:31-43.
[21] HARTWIG J,DARR S.Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J].Applied Thermal Engineering,2014,66(1/2):548-562.
[22] MA Y,LI Y Z,WANG L,et al.Investigation on isothermal wicking performance within metallic weaves for screen channel liquid acquisition devices(LADs)[J].International Journal of Heat and Mass Transfer,2019,135:392-402.
[23] 马原,孙靖阳,厉彦忠,等.增压速率对多孔金属筛网泡破压力影响的实验研究[J].西安交通大学学报,2021,55(11):192-198.
[24] 蒋玉婷,张鹏,颛瑞.高蒸发率下筛网通道式液体获取装置的金属筛网毛细性能研究[J].低温与超导,2021,49(1):6-15.
[25] 朱文杰,张瑞平,黄立钠,等.筛网LAD通道液氮动态出流性能研究[J].低温工程,2022(1):46-50.
[26] 刘畅,肖泽宁,胡声超,等.筛网通道液体获取装置压降模型及试验研究[J].导弹与航天运载技术,2021(1):56-60.
[27] 王晔,张婉雨,汪彬,等.多孔网幕泡破压力预测模型的建立及实验验证[J].化工学报,2022,73(3):1102-1110.
[28] MASOODI R,PILLAI K M.Wicking in porous materials:Traditional and modern modeling approaches[M].Boca Raton,FL:CRC Press,2012.
相似文献/References:
[1]于海磊,陈锋,郑勤生,等.低温推进剂液位监测系统设计[J].火箭推进,2010,36(03):54.
Yu Hailei,Chen Feng,Zheng Qinsheng,et al.Design of monitoring system for
cryogenic propellant level[J].Journal of Rocket Propulsion,2010,36(03):54.
[2]曹文庆,谭海林,李伟.低温发动机试验推进剂人口温度控制[J].火箭推进,2009,35(03):52.
Cao Wenqing,Tan Hailin,Li Wei.Propellant inlet temperature control
for cryogenic rocket engine tests[J].Journal of Rocket Propulsion,2009,35(03):52.
[3]杨永强,刘站国,徐浩海,等.液氧煤油发动机低温组元两相充填过程研究[J].火箭推进,2006,32(02):11.
Yang Yongqiang,Liu Zhanguo,Xu Haohai.Research on two-phase filling process of cryogenic propellant for a LOX/Kerosene LRE[J].Journal of Rocket Propulsion,2006,32(03):11.
[4]薛国宇,陈志坚,王德忠,等.低温表面张力贮箱研究[J].火箭推进,2005,31(03):26.
Xue Guoyu,Chen Zhijian,Wang Dezhong.Study on cryogenic surface tension propellant tank[J].Journal of Rocket Propulsion,2005,31(03):26.
[5]段文浩,张佳,王虹玥.数字式低温液位测量系统[J].火箭推进,2017,43(03):79.
DUAN Wenhao,ZHANG Jia,WANG Hongyue.Digital measurement system for cryogenic liquid level[J].Journal of Rocket Propulsion,2017,43(03):79.
[6]张春伟,柴栋栋,马军强,等.低温推进剂致密化技术的发展综述[J].火箭推进,2023,49(03):1.
ZHANG Chunwei,CHAI Dongdong,MA Junqiang,et al.Review on development of cryogenic propellant densification technology[J].Journal of Rocket Propulsion,2023,49(03):1.
备注/Memo
收稿日期:2022-08-10; 修回日期:2022-08-31
基金项目:国家自然科学基金青年项目(51906194); 中国博士后科学基金(2019M663701); 上海航天科技创新基金(SAST2020-018); 上海市科技计划项目(20YF1447900)
作者简介:马原(1991—),女,博士,副教授,研究领域为低温推进剂空间管理技术等。