航天推进技术研究院主办
ZHANG Ping,LI Bin,GAO Yushan,et al.Research progress of fatigue life for the thrust chamber of reusable rocket engines[J].Journal of Rocket Propulsion,2024,50(01):12-27.[doi:10.3969/j.issn.1672-9374.2024.01.002]
重复使用火箭发动机推力室疲劳寿命研究进展
- Title:
- Research progress of fatigue life for the thrust chamber of reusable rocket engines
- 文章编号:
- 1672-9374(2024)01-0012-16
- Keywords:
- reusability; liquid rocket engine; regeneratively-cooled thrust chamber; thermal-mechanical failure; fatigue life prediction
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 再生冷却推力室内壁的热-机械疲劳失效严重影响重复使用液体火箭发动机的可靠性和使用寿命,疲劳分析在内壁损伤机理研究、寿命预测和结构优化设计中具有重要作用。简要回顾了推力室再生冷却结构热-机械疲劳分析方法的发展历程,重点围绕材料本构关系、热-力响应计算和疲劳寿命模型,对比梳理已有方法,讨论其特点及应用。基于研究进展与工程需求,从全服役周期瞬态载荷环境、材料本构关系、热-机械损伤模型及验证、基体与涂/镀层耦合失效分析和基于有限数据的工程方法等方面给出了进一步研究的方向和建议。
- Abstract:
- The thermal-mechanical fatigue failure of regeneratively-cooled thrust chamber wall seriously affects the reliability and service life of reusable liquid rocket engines. Fatigue analysis plays an important role in the study of damage mechanism, life time prediction and structural optimization. The development of thermal-mechanical fatigue analyzing method for the regenerative cooling structure of thrust chambers was briefly reviewed. Focusing on constitutive relations of material, calculation of thermal-mechanical response and fatigue life models, developed methods were summarized and compared, their characteristics and applications were discussed. Based on the research progress and engineering requirement, suggestions were given for further research, in terms of the transient load condition of full service period, constitutive relations, thermal-mechanical damage model and verification, matrix-coating-coupled failure analysis and limited-data-based engineering approach.
参考文献/References:
[1] 刘国球.液体火箭发动机原理[M].北京:宇航出版社, 1993.
LIU G Q.Principle of liquid rocket engine [M].Beijing:Astronautics Press, 1993.
[2]李斌, 闫松, 杨宝锋.大推力液体火箭发动机结构中的力学问题[J].力学进展, 2021, 51(4):831-864.
LI B, YAN S, YANG B F.Mechanical problems of the large thrust liquid rocket engine[J].Advances in Mechanics, 2021, 51(4): 831-864.
[3]王振, 谭永华, 黄道琼, 等.液体火箭发动机结构中的疲劳问题[C]//中国力学大会论文集.北京:中国力学学会,2017.
WANG Z, TAN Y H, HUANG D Q, et al. Fatigue problems for the liquid rocket engine structure[C]// Proceedings of the Chinese Mechanics Congress.Beijing: CSTAM, 2017.
[4]GOALWIN D S.A high-pressure regeneratively cooled thrust chamber.Volume 1: Analysis, test, and evalua-tion[R].R-7646-1, 1969.
[5]KAUFMANN M.A high-pressure regeneratively cooled thrust chamber.Volume 1: Design and manufacturing report[Z].1968.
[6]ARMSTRONG W.The 3.3 K thrust chamber life predic-tion[EB/OL].[2022-01-05].https://www.semanticscholar.org/paper/The-3.3K-thrust-chamber-life-prediction-Armstrong/0dca3b63b8a786482026f76d429285d8e04
a5f23.
[7]HANNUM N, KASPER H, PAVLI A.Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers[C]//12th Propulsion Conference.Reston, Virigina: AIAA, 1976.
[8]QUENTMEYER R.Experimental fatigue life investigation of cylindrical thrust chambers[C]//13th Propulsion Conference.Reston, Virigina: AIAA, 1977.
[9]HANNUM N, QUENTMEYER R J, KASPER H J.Some effects of cyclic induced deformation in rocket thrust chambers[R].NASA TM-79112, 1979.
[10]HANNUM N, PRICE R.Some effects of thermal-cycle-induced deformation in rocket thrust chambers[R].NASA-TP-1834, 1981.
[11]MILLER R.Low-cycle fatigue analysis of a cooled copper combustion chamber[C]//10th Propulsion Conference.Reston, Virigina: AIAA, 1974.
[12]MILLER R.Cyclic fatigue analysis of rocket thrust chambers.Volume 1:OFHC copper chamber low cycle fatigue[R].NASA CR-134641, 1974.
[13]CONWAY J B, STENTZ R, BERLING J.High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles.Part 2: Strainrange partitioning and low-cycle fatigue results at 538 ℃[R].NASA CR-135073, 1976.
[14]CONWAY J B, STENTZ R, BERLING J.High temperature, low-cycle fatigue of copper-base alloys in argon.Part 1:Preliminary results for 12 alloys at 1 000 (538 ℃)[R].NASA CR-121259, 1973.
[15]CONWAY J B, STENTZ R, BERLING J.High temperature, low-cycle fatigue of copper-base alloys in argon.Part 2: Zirconium-copper at 482, 538 and 593 ℃[R].NASA CR-121260, 1973.
[16]CONWAY J B, STENTZ R, BERLING J.High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles.Part 1: Narloy Z[R].NASA CR-134627, 1974.
[17]CONWAY J B, STENTZ R, BERLING J.High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles.Part 2: NASA 1.1, Glidcop, and sputtered copper alloys[R].NASA CR-134628, 1974.
[18]CONWAY J B, STENTZ R, BERLING J.High-temperature, low-cycle fatigue of copper-base alloys for rocket nozzles.Part 1: Data summary for materials tested in prior programs[R].NASA CR-134908, 1975.
[19]POROWSKI J, BADLANI M, KASRALE B, et al.Development of a simplified procedure for thrust chamber life prediction[R].NASA CR-165585, 1981.
[20]KASRAIE B, KASPER H, POROWSKI J, et al.A simplified design procedure for life prediction of rocket thrust chambers[C]//18th Joint Propulsion Conference.Reston, Virigina: AIAA, 1982.
[21]DAI X, RAY A.Life prediction of the thrust chamber wall of a reusable rocket engine[J].Journal of Propulsion and Power, 1995, 11(6): 1279-1287.
[22]ARNOLD S, BUTLER D, PINDERS M J.Analysis of factors affecting the performance of RLV thrust cell liners[R].NASA CR-2004-213141, 2004.
[23]IMMICH H, MAYER W.Cryogenic liquid rocket engine technology developments within the German National Technology Programme[C]//33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA,1997.
[24]RICCIUS J.Cyclic laser heating and optical measurement of combustion chamber wall structures[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2012.
[25]RICCIUS J, GERNOTH A, SCHLECHTRIEM S.TMF tests:Optical heating, thermography and deformation measurement of combustion chamber wall structures[C]// 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2011.
[26]GERNOTH A, RICCIUS J, HAIDN O, et al.TMF panel test:Close-to-reality simulation of thermo-mechanical ftigue processes in heat-loaded walls[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2008.
[27]GERNOTH A, WURDAK M, RICCIUS J, et al.TMF test based validation of numerical methods for the analysis of heat-loaded walls[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2010.
[28]FASSIN M, KOWOLLIK D, WULFINGHOFF S, et al.Design studies of rocket engine cooling structures for fatigue experiments[J].Archive of Applied Mechanics, 2016, 86(12): 2063-2093.
[29]RICCIUS J, HAIDN O, ZAMETAEV E.Influence of time dependent effects on the estimated life time of liquid rocket combustion chamber walls[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2004.
[30]RICCIUS J, ZAMETAEV E, HAIDN O, et al.LRE chamber wall optimization using plane strain and generalized plane strain models[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2006.
[31]RICCIUS J, ZAMETAEV E.Stationary and transient thermal analyses of cryogenic liquid rocket combustion chamber walls[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina:AIAA, 2002.
[32]TINI V, REESE S.A viscoplastic‐damage model for the lifetime prediction of regeneratively cooled noozle structures[EB/OL].[2022-02-10].https://www.semanticscholar.org/paper/A-Viscoplastic%E2%80%90Damage-Model-for-the-Lifetime-of-Tini-Reese/4eada7233e423a81aac00dfc775cc 2a104401600,.
[33]TINI V, REESE S.A material model for the lifetime prediction of regeneratively cooled nozzle structures[J].PAMM, 2009, 9(1):695-696.
[34]THIEDE R, RICCIUS J, REESE S.Life prediction of rocket combustion-chamber-type thermomechanical fatigue panels[J].Journal of Propulsion and Power, 2017, 33:1529-1542.
[35]THIEDE G, ZAMETAEV E B, RICCIUS J R, et al.Comparison of damage parameter based Finite Element fatigue life analysis results to combustion chamber type TMF panel test results[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference.Reston, Virginia: AIAA, 2015.
[36]THIEDE G, RICCIUS J R, REESE S.Validation of damage parameter based finite element fatigue life analysis results to combustion chamber type TMF panel test results[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.Reston, Virginia: AIAA, 2016.
[37]MILLER R.RETSCP:A computer program for analysis of rocket engine thermal strains with cyclic plasticity[R].NASA CR-134640, 1974.
[38]ARMSTRONG W H, BROGREN E W.Thrust chamber life prediction.Volume 2: Plug nozzle centerbody and cylinder life analysis[R].NASA CR-134822, 1975.
[39]ARMSTRONG W H, BROGREN E W.Thrust chamber life prediction.Volume 3: Fatigue life parametric study[R].NASA CR-134823, 1975.
[40]ARMSTRONG W, BROGREN E.Three dimensional thrust chamber life prediction[R].NASA CR-134979, 1976.
[41]ARMSTRONG W.Structural analysis of cylindrical thrust chambers, Volume 1[R].NASA CR-159522, 1979.
[42]ARMSTRONG W.Structural analysis of cylindrical thrust chambers, Volume 2[R].NASA CR-165241, 1981.
[43]BADLANI M, POROWSKI J, ODONNELL W J, et al.Development of a simplified procedure for rocket engine thrust chamber life prediction with creep[R].NASA CR-168261, 1983.
[44]KASPER H J.Thrust chamber life prediction[R].NASA CP-2372, 1985.
[45]RICCIUS J R, BOUAJILA W, ZAMETAEV E.Validation of a commercial finite element program with combustion chamber type tmf panel test results[C]//49th AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2013.
[46]栾叶君, 孙纪国, 田昌义, 等.氢氧推力室再生冷却内壁故障分析[J].火箭推进, 2006, 32(5): 17-21.
LUAN Y J, SUN J G, TIAN C Y, et al.Failure analysis on regeneratively cooled wall of a hydrogen-oxygen thrust chamber[J].Journal of Rocket Propulsion, 2006, 32(5):17-21.
[47]杨进慧, 陈涛, 金平, 等.液体火箭发动机再生冷却槽寿命预估[J].航空动力学报, 2012, 27(4): 907-912.
YANG J H, CHEN T, JIN P, et al.Life prediction of cooling passage for reusable liquid rocket engine[J].Journal of Aerospace Power, 2012, 27(4): 907-912.
[48]王召, 田原, 孙纪国.甲烷发动机再生冷却推力室内壁寿命研究分析[C]//中国宇航学会液体火箭推进技术专业委员会论文集.北京:中国宇航学会, 2014.
WANG Z, TIAN Y, SUN J G.Study and analysis on the life time of a methane engine regenerative cooling thrust chamber wall[C]//Proceedings of Rocket Propulsion Technology of Chinese Society of Astronautics.Beijing:Chinese Society of Astronautics, 2014.
[49]张亮, 吴海波, 张德禹, 等.液体火箭发动机推力室喉部结构热疲劳寿命预估研究[J].火箭推进, 2014, 40(5):24-28.
ZHANG L, WU H B, ZHANG D Y, et al.Study on predicting thermal fatigue life for throat structure of LRE thrust chamber[J].Journal of Rocket Propulsion, 2014, 40(5): 24-28.
[50]康玉东, 孙冰.液体火箭发动机推力室可重复使用技术[J].航空动力学报, 2012, 27(7): 1659-1664.
KANG Y D, SUN B.Reusable technology for liquid rocket engine thrust chamber[J].Journal of Aerospace Power, 2012, 27(7): 1659-1664.
[51]孙冰, 丁兆波, 康玉东.液体火箭发动机推力室内壁寿命预估[J].航空动力学报, 2014, 29(12): 2980-2986.
SUN B, DING Z B, KANG Y D.Life prediction of liquid rocket engine thrust chamber liner wall[J].Journal of Aerospace Power, 2014, 29(12): 2980-2986.
[52]康玉东, 孙冰.液体火箭发动机推力室内壁三维热强度分析[J].推进技术, 2012, 33(5): 809-813.
KANG Y D, SUN B.Three dimensional thermomechanical analysis of liquid rocket engine thrust chamber inner wall[J].Journal of Propulsion Technology, 2012, 33(5): 809-813.
[53]程诚, 王一白, 刘宇, 等.冷却剂参数对铣槽喷管低周疲劳寿命的影响[J].推进技术, 2013, 34(4):537-544.
CHENG C, WANG Y B, LIU Y, et al.Effects of coolant parameters on low cycle fatigue life of milled channel nozzle[J].Journal of Propulsion Technology, 2013, 34(4):537-544.
[54]程诚, 王一白, 刘宇, 等.冷却流道布局对铣槽喷管低周疲劳寿命的影响[J].推进技术, 2013, 34(9):1257-1265.
CHENG C, WANG Y B, LIU Y, et al.Effects of coolant passage layout on low cycle fatigue life of milled channel nozzle[J].Journal of Propulsion Technology, 2013, 34(9): 1257-1265.
[55]CHENG C, WANG Y B, LIU Y, et al.Thermal-structural response and low-cycle fatigue damage of channel wall nozzle[J].Chinese Journal of Aeronautics, 2013, 26(6): 1449-1458.
[56]KUHL D, WOSCHNAK A, HAIDN O.Coupled heat transfer and stress analysis of rocket combustion chambers[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina:AIAA, 1998.
[57]KUHL D, RICCIUS J, HAIDN O J.Thermomechanical analysis and optimization of cryogenic liquid rocket engines[J].Journal of Propulsion and Power, 2002, 18(4): 835-846.
[58]ASRAFF A K, SUNIL S, MUTHUKUMAR R, et al.New concepts in structural analysis and design of double walled LPRE thrust chambers[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2006.
[59]ASRAFF A K, SUNIL S, MUTHUKUMAR R, et al.Stress analysis & life prediction of a cryogenic rocket engine thrust chamber considering low cycle fatigue, creep and thermal ratchetting[J].Transactions of the Indian Institute of Metals, 2010, 63(2): 601-606.
[60]杨进慧, 陈涛, 金平, 等.可重复使用火箭发动机再生冷却槽失效分析[J].北京航空航天大学学报, 2013, 39(9): 1187-1191.
YANG J H, CHEN T, JIN P, et al.Failure analysis of reusable rocket engine coolant passage[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1187-1191.
[61]孙冰, 宋佳文.液体火箭发动机推力室壁瞬态加载三维热结构分析[J].推进技术, 2016, 37(7):1328-1333.
SUN B, SONG J W.Three dimensional transient loading thermomechanical analysis of LRE thrust chamber wall[J].Journal of Propulsion Technology, 2016, 37(7): 1328-1333.
[62]RICCIUS J R, BOUAJILA W, ZAMETAEV E B.Comparison of finite element analysis and experimental results of a combustion chamber type TMF panel test[C]// 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston, Virginia:AIAA, 2013.
[63]KOWOLLIK D, TINI V, REESE S, et al.3D fluid-structure interaction analysis of a typical liquid rocket engine cycle based on a novel viscoplastic damage model[J].International Journal for Numerical Methods in Engineering, 2013, 94(13): 1165-1190.
[64]ALLIOT P, HUCK A, EDLINGER P.Low cycle fatigue analysis of the combustion chamber of the Vulcain engine gas generator[C]//31st Structures, Structural Dynamics and Materials Conference.Reston, Virigina: AIAA, 1990.
[65]ASRAFF A K, SHEELA S, PAUL A, et al.Cyclic stress analysis of a rocket engine thrust chamber using chaboche, voce and creep constitutive models[J].Transactions of the Indian Institute of Metals, 2016, 69(2):495-500.
[66]羽中豪, 金平, 蔡国飙.可重复使用液体火箭发动机设计参数对推力室身部棘轮应变的影响[J].载人航天, 2018, 24(2): 245-252.
YU Z H, JIN P, CAI G B.Influence of design parameters of reusable rocket engines on ratchet strain of chambers[J].Manned Spaceflight, 2018, 24(2):245-252.
[67]刘迪, 孙冰, 马星宇.液氧/甲烷发动机推力室多循环热-结构分析[J].推进技术, 2021, 42(7): 1615-1627.
LIU D, SUN B, MA X Y.Multi-cycle thermo-structural analysis of thrust chamber for liquid oxygen/methane engine[J].Journal of Propulsion Technology, 2021, 42(7): 1615-1627.
[68]LIU D, SUN B, WANG T P, et al.Thermo-structural analysis of regenerative cooling thrust chamber cylinder segment based on experimental data[J].Chinese Journal of Aeronautics, 2020, 33(1): 102-115.
[69]SONG J W, SUN B.Damage localization effects of the regeneratively-cooled thrust chamber wall in LOx/methane rocket engines[J].Chinese Journal of Aeronautics, 2018, 31(8): 1667-1678.
[70]ROBINSON D N, ARNOLD S M.Effects of state recovery on creep buckling under variable loading[J].Journal of Applied Mechanics, 1990, 57(2): 313-320.
[71]ARYA V K.Nonlinear structural analysis of cylindrical thrust chambers using viscoplastic models[J].Journal of Propulsion and Power, 1992, 8(3): 598-604.
[72]ARYA V K, ARNOLD S M.Viscoplastic analysis of an experimental cylindrical thrust chamber liner[J].AIAA Journal, 1992, 30(3): 781-789.
[73]ARYA V K, KAUFMAN A.Finite element implementation of Robinson's unified viscoplastic model and its application to some uniaxial and multiaxial problems[J].Engineering Computations, 1989, 6(3): 237-247.
[74]JANOVSKY R S, ARYA V K, KAZAROFF J M, et al.Structurally compliant rocket engine combustion chamber: experimental and analytical validation[J].Journal of Spacecraft and Rockets, 1995, 32(4): 645-652.
[75]杨进慧, 陈涛, 金平, 等.液体火箭发动机再生冷却槽黏塑性分析[J].计算机辅助工程, 2013, 22(S1):164-168.
YANG J H, CHEN T, JIN P, et al.Viscoplastic analysis on regeneration cooling tank of liquid rocket engine[J].Computer Aided Engineering, 2013, 22(S1):164-168.
[76]YANG J H, CHEN T, JIN P, et al.Influence of the startup and shutdown phases on the viscoplastic structural analysis of the thrust chamber wall[J].Aerospace Science and Technology, 2014, 34: 84-91.
[77]SUNG I K, NORTHCUTT B, RUBEL K, et al.A subscale-based life prediction methodology for rocket engine combustor[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina:AIAA, 2003.
[78]SUNG I, ANDERSON W.A subscale-based rocket combustor life prediction methodology[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2005.
[79]吴建军, 程玉强, 魏鹏飞, 等.可重复使用液体火箭发动机减损控制理论与方法[M].北京:科学出版社, 2013.
[80]程玉强, 吴建军, 刘洪刚.发动机初级工况对冷却夹套隔片损伤影响分析[J].计算机仿真, 2010, 27(3):56-59.
CHENG Y Q, WU J J, LIU H G.The anylises of the coolant channel ligaments“damage to engines” primary-state[J].Computer Simulation, 2010, 27(3): 56-59.
[81]程玉强.可重复使用液体火箭发动机关键部件损伤动力学与减损控制方法研究[D].长沙:国防科学技术大学, 2009.
CHENG Y Q.Key components' damage dynamics and damage-mitigating control techniques for reusable liquid-propellant rocket engines[D].Changsha: National University of Defense Technology, 2009.
[82]程玉强, 魏鹏飞, 吴建军.基于模糊推理的液体火箭发动机推力室减损控制研究[J].火箭推进, 2005, 31(3): 9-13.
CHENG Y Q, WEI P F, WU J J.Research of damage mitigating control of thrust chamber based on fuzzy logic reasoning for liquid propellant rocket engine[J].Journal of Rocket Propulsion, 2005, 31(3): 9-13.
[83]FERRAIUOLO M, RUSSO V, VAFAI K.A comparative study of refined and simplified thermo-viscoplastic modeling of a thrust chamber with regenerative cooling[J].International Communications in Heat and Mass Transfer, 2016, 78: 155-162.
[84]FERRAIUOLO M, RICCIO A.Study of the effects of materials selection for the closeout structure on the service life of a liquid rocket engine thrust chamber[J].Journal of Materials Engineering and Performance, 2019, 28(6):3186-3195.
[85]KIMURA T, MORIYA S I, TAKAHASHI M.Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber[J].Acta Astronautica, 2019, 158:244-252.
[86]SCHWARZ W, SCHWUB S, QUERING K, et al.Life prediction of thermally highly loaded components:modelling the damage process of a rocket combustion chamber hot wall[J].CEAS Space Journal, 2011, 1(1):83-97.
[87]SCHWARZ W, WIEDMANN D, SCHWUB S, et al.Assessment of different continuum damage models for life-time prediction of high-thrust cryogenic combustion chambers[EB/OL].[2022-06-01].https://www.semanticscholar.org/paper/Assessment-of-different-continuum-damage-models-for-Schwarz-Wiedmann/5500308c1a3575b2104d0dec5e
4c6830e2071d6a, 2011.
[88]HÖTTE F, GÜNTHER O, ROHDENBURG M, et al.Roughness and crack investigations of rocket combustion chambers and pressure loss measurements in a high aspect ratio cooling duct[Z].2019.
[89]BARFUSZ O, HÖTTE F, REESE S, et al.Lifetime analysis of a virtual thrust chamber demonstrator and 11-domain conjugate heat transfer simulation of a rocket combustion chamber[Z].2019.
[90]杨晓光, 石多奇.粘塑性本构理论及其应用[M].北京:国防工业出版社, 2013.
YANG X G, SHI D Q.Viscoplastic constitutive theory and application[M].Beijing:National Defense Industry Press, 2013.
[91]ASRAFF A K, SURESH BABU S, BABU A, et al.Application of chaboche model in rocket thrust chamber analysis[J].Journal of the Institution of Engineers(India):Series C, 2017, 98(3):227-233.
[92]FREED A, VERRILLI M.A viscoplastic theory applied to copper[R].NASA TM-100831, 1988.
[93]ROBINSON D N, SWINDEMAN R W.Unified creep/plasticity constitutive equations for 2 1/4 Cr-1 Mo steel at elevated temperature[R].ORNL TM-8444, 1982.
[94]LEMA(^overI)TRE J.A course on damage mechanics[M].Berlin:Springer-Verlag, 1992.
[95]KIMURA T, MORIYA S, TAKAHASHI M.Effects of Cu-alloy material properties on lifetime of a combustion chamber with or without a thermal barrier coating[C]//7th European Conference for Aeronautics and Space Sciences.[S.l.]:[s.n.], 2017.
[96]RICCIUS J, ZAMETAEV E B, HAIDN O, et al.Comparison of 2d and 3d structural FE-analyses of LRE combustion chamber walls[EB/OL].[2022-06-09].https://www.semanticscholar.org/paper/Comparison-of-2d-and-3d-Structural-FE-Analyses-of-Riccius-Zametaev/ba909a4
63ceff4364226da95ec660837653a1712.
[97]RAY A, DAI X W, WU M K, et al.Damage-mitigating control of a reusable rocket engine[J].Journal of Propulsion and Power, 1994, 10(2):225-234.
[98]SONG J W, SUN B.Coupled numerical simulation of combustion and regenerative cooling in LOx/Methane rocket engines[J].Applied Thermal Engineering, 2016, 106:762-773.
[99]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社, 2003.
YAO W X.Fatigue life analysis of structure[M].Beijing:National Defense Industry Press, 2003.
[100] SUNAKAWA H, NISHIMOTO M, YAMANISHI N, et al.Reliability and life time evaluation approach of the LE-X engine[C]// 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virigina: AIAA, 2011.
[101]AMAKAWA H, NISHIMOTO M, NEGISHI H, et al.Chamber life time evaluation of a regeneratively cooled thrust chamber with thermal barrier coatings[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston, Virginia: AIAA, 2017.
[102]贾良玖,葛汉彬.强震下金属结构的超低周疲劳破坏[M].上海:同济大学出版社,2019.
JIA L J,GE H B.Ultra-low-cycle fatigue failure of metal structures under strong earthquakes[M].Shanghai: Tongji University Press, 2019.
相似文献/References:
[1]张小平,李春红,马冬英.液氧/甲烷发动机动力循环方式研究[J].火箭推进,2009,35(04):14.
Zhang Xiaoping,Li Chunhong,Ma Dongying.Study on the LOX/methane rocket engine power cycles[J].Journal of Rocket Propulsion,2009,35(01):14.
[2]李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考[J].火箭推进,2017,43(01):1.
LI Bin,ZHANG Xiaoping,GAO Yushan.Consideration on development of reusable liquid rocket engine in China[J].Journal of Rocket Propulsion,2017,43(01):1.
[3]李元启,刘红军,徐浩海,等.液体火箭发动机动态特性仿真技术研究进展[J].火箭推进,2017,43(05):1.
LI Yuanqi,LIU Hongjun,XU Haohai,et al.Research progress on numerical simulation technology of
liquid rocket engine dynamic characteristics[J].Journal of Rocket Propulsion,2017,43(01):1.
[4]刘锋,申智帅,王波,等.气动增压空间推进系统及相关技术试验研究[J].火箭推进,2017,43(06):38.
LIU Feng,SHEN Zhishuai,et al.Experimental study on pneumatic pressurization space propulsion system and its correlation technology[J].Journal of Rocket Propulsion,2017,43(01):38.
[5]王 丹,陈宏玉,周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进,2018,44(02):28.
WANG Dan,CHEN Hongyu,ZHOU Chenchu.System scheme and performance evaluation of an engine fed by electric pump[J].Journal of Rocket Propulsion,2018,44(01):28.
[6]左 蔚,宋梦华,杨欢庆,等.增材制造技术在液体火箭发动机应用述评[J].火箭推进,2018,44(02):55.
ZUO Wei,SONG Menghua,YANG Huanqing,et al.Application of additive manufacturing technology in liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(01):55.
[7]杜大华,穆朋刚,田川,等.液体火箭发动机管路断裂失效分析及动力优化[J].火箭推进,2018,44(03):16.
DU Dahua,MU Penggang,et al.Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(01):16.
[8]张蒙正,张 玫.航天运载器重复使用液体动力若干问题探讨[J].火箭推进,2019,45(04):9.
ZHANG Mengzheng,ZHANG Mei.Discussion on some problems of reusable liquid-propellant engine[J].Journal of Rocket Propulsion,2019,45(01):9.
[9]蒲光荣,单 磊,赵晓慧,等.泵压式多次起动发动机起动过程仿真研究[J].火箭推进,2019,45(05):17.
PU Guangrong,SHAN Lei,ZHAO Xiaohui,et al.Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J].Journal of Rocket Propulsion,2019,45(01):17.
[10]石 璞,朱国强,李进贤,等.液体火箭发动机针栓喷注器雾化燃烧技术研究进展[J].火箭推进,2020,46(04):1.
SHI Pu,ZHU Guoqiang,LI Jinxian,et al.Advances in atomized combustion technology research of pintle injector for liquid rocket engines[J].Journal of Rocket Propulsion,2020,46(01):1.
备注/Memo
收稿日期:2022- 06- 28 修回日期:2022- 08- 15
基金项目:国家自然科学基金青年基金(52005385)
作者简介:张凭(1993—),男,博士,工程师,研究领域为液体火箭发动机高温组件疲劳寿命。