航天推进技术研究院主办
TAO Mengyao,DUAN Yifei,MAO Kai,et al.Design and experiment of the turbopump bearing used in reusable liquid rocket engines[J].Journal of Rocket Propulsion,2024,50(01):87-96.[doi:10.3969/j.issn.1672-9374.2024.01.008]
可重复使用液体火箭发动机涡轮泵轴承设计及试验
- Title:
- Design and experiment of the turbopump bearing used in reusable liquid rocket engines
- 文章编号:
- 1672-9374(2024)01-0087-10
- Keywords:
- reusability; turbopump; bearing; repeated start-stop operation
- 分类号:
- V434.21
- 文献标志码:
- A
- 摘要:
- 可重复使用液体火箭发动机研制需求的出现,对涡轮泵结构可靠性设计提出了更高的要求。针对涡轮泵中轴承在低温、高速、重载、重复启停等恶劣工况下容易失效的问题,以某型可重复使用液氧/煤油火箭发动机涡轮泵为研究对象,从结构、材料、保持架等方面对涡轮泵轴承进行了设计和动力学计算分析。根据涡轮泵工作工况,设计了低温和常温轴承运转试验系统,进行了轴承重复启停运转试验,试验过程中对轴承温度和运转转速进行监测以便判断轴承状态,试验后检查轴承钢球和滚道均正常,并对轴承设计参数进行复测发现无较大偏差。试验结果表明,设计的涡轮泵轴承在设计转速下可以完成预定的重复启停运转,同时试后同批次轴承搭载发动机试车考核成功重复点火十余次。
- Abstract:
- The demand for the development of reusable liquid rocket engines has put forward higher requirements for the reliability design of turbopump structures. Aiming at the problem of failure of bearings in turbopumps under harsh working conditions such as low temperature, high speed, heavy load, and repeated start-stop, a certain type of reusable liquid oxygen kerosene rocket engine turbopump was taken as the research object, the design and dynamic simulation analysis of turbopump bearings were carried out from the aspects of structure, material, and retainer. Based on the working conditions of the turbopump, a low-temperature and room-temperature bearing operation test system was designed, and repeated start-stop operation tests were conducted. During the test, the bearing temperature and operating speed were monitored to determine the bearing status. After the test, the bearing steel balls and raceways were checked to be normal, and the bearing design parameters were retested and found to have no significant deviation. The experimental results show that the designed turbopump bearings can complete the predetermined repeated start-stop operation at the design speed, and at the same time, the same batch of bearings were successfully tested with engines, and ignition was repeated more than ten times.
参考文献/References:
[1] 李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[2]BIN L. Research on key technologies for reusable liquid rocket engines[J]. Aerospace China, 2022, 23(4): 24-34.
[3]ZHANG Y L, WU J J, HUANG M C, et al. Liquid-propellant rocket engine health-monitoring techniques[J]. Journal of Propulsion and Power, 1998, 14(5): 657-663.
[4]姚尚鹏, 黄红, 赵佳敏, 等. 涡轮泵典型故障仿真与辨识系统设计[J]. 火箭推进, 2023, 49(3): 96-104.
YAO S P, HUANG H, ZHAO J M, et al. Typical fault simulation and identification system design for turbopump[J]. Journal of Rocket Propulsion, 2023, 49(3): 96-104.
[5]MARKOU M, SINGH S. Novelty detection: a review. Part 1: statistical approaches[J]. Signal Processing, 2003, 83(12): 2481-2497.
[6]XU J M, LI C H, MIAO X S, et al. An overview of bearing candidates for the next generation of reusable liquid rocket turbopumps[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 26.
[7]刘子俊, 冯勇, 陈景龙, 等. 基于多源数据的液体火箭发动机智能异常检测[J]. 火箭推进, 2022, 48(3): 79-86.
LIU Z J, FENG Y, CHEN J L, et al. Intelligent anomaly detection of liquid rocket engine with multi-source data[J]. Journal of Rocket Propulsion, 2022, 48(3): 79-86.
[8]臧东情, 秦雷, 何伟锋, 等. 基于EMD-Hilbert包络谱分析的涡轮泵轴承故障特征识别[J]. 火箭推进, 2023, 49(5): 59-65.
ZANG D Q, QIN L, HE W F, et al. Fault feature identification of turbopump bearings based on EMD-Hilbert envelope spectrum analysis[J]. Journal of Rocket Propulsion, 2023, 49(5): 59-65.
[9]郭霄峰.液体火箭发动机试验[M]. 北京:中国宇航出版社,1990.
GUO X F. Liquid rocket engine test[M].Beijing: China Aerospace Publishing House, 1990.
[10]ZARETSKY E V, CHIU Y P, TALLIAN T E. Ceramic bearings for use in gas turbine engines[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 2830-2846.
[11]PASINI A, SIMI R, BROTINI G, et al. A test facility for the lifetime characterization of cryogenic high-speed bearings[C]//AIAA Propulsion and Energy 2021 Forum. Reston, Virginia: AIAA, 2021.
[12]AVERBACH B L, BAMBERGER E N. Analysis of bearing incidents in aircraft gas turbine mainshaft bearings[J]. Tribology Transactions, 1991, 34(2): 241-247.
[13]WARHADPANDE A, SADEGHI F, KOTZALAS M N, et al. Effects of plasticity on subsurface initiated spalling in rolling contact fatigue[J]. International Journal of Fatigue, 2012, 36(1): 80-95.
[14]MITAMURA N, HIDAKA H, TAKAKI S. Microstructural development in bearing steel during rolling contact fatigue[J]. Materials Science Forum, 2007, 539/540/541/542/543: 4255-4260.
[15]刘耀中, 张旭, 杨柳. 滚动轴承的接触疲劳微观机理及影响因素[J]. 轴承, 2015(10): 53-57.
LIU Y Z, ZHANG X, YANG L. Microscopic mechanisms and influencing factors for contact fatigue of rolling bearings[J]. Bearing, 2015(10): 53-57.
[16]李鸿亮, 郝大庆, 郑艳伟, 等. 高速频繁起停球轴承设计与试验[J]. 航空动力学报, 2021, 36(12): 2596-2605.
LI H L, HAO D Q, ZHENG Y W, et al. Design and test for ball bearings under high-speed and frequent start-stop[J]. Journal of Aerospace Power, 2021, 36(12): 2596-2605.
[17]邓四二, 贾群义, 薛进学. 滚动轴承设计原理[M]. 2版. 北京: 中国标准出版社, 2014.
DENG S E,JIA Q Y,XUE J X. Design principles of rolling bearings[M].2nd ed.Beijing: China Standard Press,2014.
[18]中国机械工业联合会. 滚动轴承 额定动载荷和额定寿命: GB/T 6391—1995[S]. 北京: 中国标准出版社,1995.
China Machinery Industry Federation.Rolling bearings:dynamic load ratings and rating life: GB/T 6391—1995[S]. Beijing: China Standard Press,1995.
相似文献/References:
[1]金 路,王俨剀,王 彤,等.涡轮泵转子失稳故障分析[J].火箭推进,2020,46(04):23.
JIN Lu,WANG Yankai,WANG Tong,et al.Analysis and diagnosis of turbine pump rotor instability[J].Journal of Rocket Propulsion,2020,46(01):23.
[2]孙羽键,李广,徐自力,等.重复使用火箭发动机涡轮泵载荷谱编制方法[J].火箭推进,2024,50(01):97.[doi:10.3969/j.issn.1672-9374.2024.01.009]
SUN Yujian,LI Guang,XU Zili,et al.Compilation method of reusable rocket engine turbopump load spectrum[J].Journal of Rocket Propulsion,2024,50(01):97.[doi:10.3969/j.issn.1672-9374.2024.01.009]
备注/Memo
收稿日期:2023- 10- 25 修回日期:2023- 11- 27
基金项目:国家重点项目
作者简介:陶孟尧(1997—),男,硕士,研究领域为液体火箭发动机涡轮泵技术。