航天推进技术研究院主办
HU Jinhua,ZHANG Zhongli,QIU Chengxu,et al.Experiment on the fuel active cooling of multi-working combustion chamber[J].Journal of Rocket Propulsion,2024,50(01):127-134.[doi:10.3969/j.issn.1672-9374.2024.01.012]
多次启动燃烧室燃油主动冷却模拟试验
- Title:
- Experiment on the fuel active cooling of multi-working combustion chamber
- 文章编号:
- 1672-9374(2024)01-0127-08
- Keywords:
- scramjet; multi-working; combustion chamber; active cooling
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 高超声速飞行器在不同马赫数、不同高度间跳跃飞行时,燃烧室在不同工况下间歇工作,热载荷发生交替变化,为保证燃烧室结构正常工作,采用燃油主动冷却对燃烧室进行热防护。为了验证燃烧室在燃油主动冷却时是否结焦积碳进而影响其正常工作,设计了多次启动燃烧室燃油主动冷却模拟试验装置,该装置采用电加热的方法模拟高温来流产生的交变热载荷,对主动冷却燃烧室模拟试验件进行了热壁冷油、热壁热油和燃油不流动状态试验考核。结果表明:主动冷却燃烧室热结构通过3次以上的热壁冷油、热壁热油循环试验后,试件未发生损坏; 随循环次数增加,试件流阻增加较小,热壁热油工况的压差增加高于热壁冷油工况; 对试验件进行剖切检查,发现冷却槽内积碳不明显,积碳主要出现在燃油出口的燃料集液腔内。
- Abstract:
- When the hypersonic vehicle jumps between different Mach numbers and altitudes, the combustion chamber works intermittently under different working conditions, and the thermal load changes alternately. In order to ensure the normal operation of the combustion chamber structure, fuel active cooling is used to protect the combustion chamber. In order to verify whether the combustion chamber coke and deposition of carbon during the active cooling of the fuel affect its normal work, a multi-worked combustion chamber fuel active cooling simulation test device is designed. The device adopts the method of electric heating to simulate the alternating heat load generated by high-temperature incoming flow, and the active cooling combustion chamber simulation test part is tested and assessed in the hot-wall-cold-oil, hot-wall-hot-oil and fuel-non-flow state. The results show that the thermal structure of the active cooling combustion chamber passes through the hot-wall-cold-oil more than 3 times. After the hot-wall-hot-oil cycle test, the specimen has not been damaged. With the increase of the number of cycles, the flow resistance of the specimen is relatively small, and the pressure difference of the hot-wall-hot-oil condition is higher than that of the hot-wall-cold-oil conditions. The specimen is examined, and it is found that the carbon deposition in the cooling channel is not obvious, and the carbon deposition mainly appears in the collector cavity of the fuel outlet.
参考文献/References:
[1] 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹, 2013(8): 78-81.
XIAO H Y, GAO F, LI N. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal, 2013(8): 78-81.
[2]PAGEL L L, WARMBOLD W R. Active cooling of a hydrogen-fueled scramjet engine[J]. Journal of Aircraft, 1969, 6(5): 472- 474.
[3]郭朝邦, 李文杰, 邢娅. 法国超燃冲压发动机主动冷却耐高温结构部件研究进展[J].飞航导弹, 2011(11): 84-91.
GUO C B, LI W J, XING Y. Research progress of active cooling of high temperature resistant structural components in French scramjet[J]. Aerodynamic Missile Journal, 2011(11): 84-91.
[4]陈锐达, 徐辉, 陈泓宇, 等. 1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J]. 火箭推进, 2023, 49(4): 17-25.
CHEN R D, XU H, CHEN H Y, et al. Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J]. Journal of Rocket Propulsion, 2023, 49(4): 17-25.
[5]卞香港, 李龙飞, 王化余, 等. 基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J]. 火箭推进, 2023, 49(4): 74-81.
BIAN X G, LI L F, WANG H Y, et al. Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J]. Journal of Rocket Propulsion, 2023, 49(4): 74-81.
[6]刘世俭, 刘兴洲. 超燃冲压发动机可贮存碳氢燃料再生主动冷却换热过程分析[J]. 飞航导弹, 2009(3): 48-52.
LIU S J, LIU X Z. Analysis of regenerative active cooling heat transfer process of storable hydrocarbon fuel in scramjet[J]. Winged Missiles Journal, 2009(3): 48-52.
[7]FU Y C, WEN J, TAO Z, et al. Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes[J]. Experimental Thermal and Fluid Science, 2017, 85: 257-265.
[8]LIANG K M, YANG B E, ZHANG Z L. Investigation of heat transfer and coking characteristics of hydrocarbon fuels[J]. Journal of Propulsion and Power, 1998, 14(5): 789-796.
[9]SUN F, LI X, BOETCHER S K S, et al. Inhomogeneous behavior of supercritical hydrocarbon fuel flow in a regenerative cooling channel for a scramjet engine[J]. Aerospace Science and Technology, 2021, 117: 106901.
[10]BATES R, EDWARDS J, MEYER M. Heat transfer and deposition behavior of hydrocarbon rocket fuels[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2003.
[11]杨彩华. 冷却通道表面处理对超临界烃热裂解结焦的抑制作用[D]. 天津: 天津大学, 2012.
YANG C H. Coke inhibition for thermal cracking of supercritical hydrocarbon over treated surface of cooling channel[D].Tianjin: Tianjin University, 2012.
[12]张霖琪, 蒋杰, 阮灿,等. 增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究[J].航空动力学报,2022,37(7):1403-1412.
ZHANG L Q, JIANG J, YUAN C, et al.Experimental study on thermal oxidation coking characteristics of aviation kerosene in additively manufactured helical tubes[J]. Journal of Aerospace Power, 2022, 37(7): 1403-1412.
[13]王英杰, 徐国强, 邓宏武, 等. 进口温度影响航空煤油结焦特性实验[J]. 航空动力学报, 2009, 24(9): 1972-1976.
WANG Y J, XU G Q, DENG H W, et al. Experimental study of influence of inlet temperature on aviation kerosene coking characteristics[J]. Journal of Aerospace Power, 2009, 24(9): 1972-1976.
[14]GASCOIN N, GILLARD P, BERNARD S, et al. Characterisation of coking activity during supercritical hydrocarbon pyrolysis[J]. Fuel Processing Technology, 2008, 89(12): 1416-1428.
[15]WICKHAM D, ALPTEKIN G, ENGEL J, et al. Additives to reduce coking in endothermic heat exchangers[C]//35th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1999.
[16]张枭雄, 侯凌云, 莫崇康,等. 航空煤油热裂解结焦实验[J]. 航空动力学报,2017,32(6): 1307-1312.
ZHANG X X,HOU L Y,MO C K,et al.Experiment on thermal cracking coke of aviation kerosene[J]. Journal of Aerospace Power, 2017, 32(6): 1307-1312.
[17]JIN B T, JING K, LIU J, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 117-126.
[18]张强,汪旭清,刘国柱,等. 主动冷却通道内吸热型碳氢燃料热裂解结焦抑制机理[J]. 推进技术,2013,34(12): 1713-1718.
ZHANG Q, WANG X Q, LIU G Z, et al. Inhibition mechanism of pyrolytic cokes from endothermic hydrocarbon fuels in regenerative cooling channels[J]. Journal of Propulsion Technology, 2013, 34(12): 1713-1718.
[19]王新竹, 张泰昌, 陆阳,等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术,2014,35(2): 213-219.
WANG X Z, ZHANG T C, LU Y, et al.An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014,35(2): 213-219.
[20]王厚庆, 何国强, 刘佩进, 等. 主动冷却超燃冲压发动机最大工作马赫数评估[J]. 固体火箭技术, 2010, 33(4): 377-381.
WANG H Q, HE G Q, LIU P J, et al. Evaluation on maximum flight Mach number of active cooling scramjet[J]. Journal of Solid Rocket Technology, 2010, 33(4): 377-381.
[21]杨样, 张磊, 张若凌, 等. 超燃冲压发动机燃烧室主动冷却设计研究[J]. 推进技术, 2014, 35(2): 208-212.
YANG Y, ZHANG L, ZHANG R L, et al. Design research of an actively fuel-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 208-212.
相似文献/References:
[1]朱舒扬.全尺寸超燃冲压发动机推力测量台架研制[J].火箭推进,2015,41(05):106.
ZHU Shuyang.Development of thrust measurement platform
for full-scale scramjet[J].Journal of Rocket Propulsion,2015,41(01):106.
[2]姚照辉,李光熙,张蒙正,等.燃油分配对超燃冲压发动机的性能影响仿真分析[J].火箭推进,2013,39(04):30.
YAO Zhao-hui,LI Guang-xi,ZHANG Meng-zheng,et al.Simulation and analysis for influence of fuel distribution on scramjet performance[J].Journal of Rocket Propulsion,2013,39(01):30.
[3]刘 昊,李光熙,杜 泉,等.超燃冲压发动机全流道反应流场仿真分析[J].火箭推进,2013,39(06):1.
LIU Hao,LI Guang-xi,DU Quan,et al.Numerical simulation of reaction flow field in full flowpath of scramjet[J].Journal of Rocket Propulsion,2013,39(01):1.
[4]张 倩,王 兵,张耘隆,等.RBCC的可实现性方案—DRBCC分析[J].火箭推进,2014,40(05):1.
ZHANG Qian,WANG Bing,ZHANG Yun-long,et al.An analysis of RBCC realizability scheme: DRBCC[J].Journal of Rocket Propulsion,2014,40(01):1.
[5]赵宏亮,张蒙正.超燃冲压发动机推阻力特性研究综述[J].火箭推进,2014,40(06):41.
ZHAO Hong-liang,ZHANG Meng-zheng.Investigation of thrust/drag property of scramjet[J].Journal of Rocket Propulsion,2014,40(01):41.
[6]张蒙正,邹 宇.美国典型高超飞行器项目研发及启示[J].火箭推进,2012,38(02):1.
ZHANG Meng-zheng,ZOU Yu.Development of American typical hypersonic flight vehicles and its enlightenment[J].Journal of Rocket Propulsion,2012,38(01):1.
[7]李龙飞,王延涛,杨伟东,等.超声速燃烧地面试验的蓄热式加热器及其关键技术[J].火箭推进,2012,38(02):16.
LI Long-fei,WANG Yan-tao,YANG Wei-dong,et al.Thermal energy storage heater and its key technologies for supersonic combustion ground test facilities[J].Journal of Rocket Propulsion,2012,38(01):16.
[8]文 科,李旭昌,马岑睿,等.不同入口马赫数对超燃冲压发动机尾喷管的性能影响研究[J].火箭推进,2011,37(03):18.
WEN Ke,LI Xu-chang,MA Cen-rui,et al.Influence of nozzle inlet Mach number on performance of scramjet nozzle[J].Journal of Rocket Propulsion,2011,37(01):18.
[9]冯锦虎,高峰,何至林.超燃冲压发动机隔离段内附面层/激波串相互干扰研究[J].火箭推进,2010,36(02):5.
Feng Jinhu,Gao Feng,He Zhilin.Investigation of boundary layer/shock wave train interference in a scramjet isolator[J].Journal of Rocket Propulsion,2010,36(01):5.
[10]王玉峰,吴宝元,王东东.变比热对超燃冲压发动机尾喷管设计的影响分析[J].火箭推进,2010,36(02):43.
Wang Yufeng,Wu BaoYuan,Wang Dongdong.Scramjet engine nozzle design with variable specific heat[J].Journal of Rocket Propulsion,2010,36(01):43.
备注/Memo
收稿日期:2023- 10- 28 修回日期:2023- 11- 30
基金项目:国家重点实验室基金(6142704220204)
作者简介:胡锦华(1989—),女,高级工程师,研究领域为液体火箭发动机热防护。