航天推进技术研究院主办
YAN Song,ZHANG Zhiwei.Modal analysis of the impeller based on 3D-SLDV and high speed 3D-DIC technology[J].Journal of Rocket Propulsion,2024,50(02):107-112.[doi:10.3969/j.issn.1672-9374.2024.02.011]
基于3D-SLDV和高速3D-DIC的离心轮模态分析
- Title:
- Modal analysis of the impeller based on 3D-SLDV and high speed 3D-DIC technology
- 文章编号:
- 1672-9374202402-0107-06
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 全场振型对于研究发动机结构动特性至关重要,介绍了基于3D-SLDV和高速3D-DIC两种全场振动测试方法的测试原理。以液体火箭发动机离心轮为例,分别采用两种技术获得了5 kHz内离心轮的固有频率和振型,对比分析了两种测试方法的优缺点,结果表明:3D-SLDV技术比3D-DIC技术具有更低的位移本底噪声,对高频振型辨识更有利,但该方法属于逐点扫描测试,测试时间长; 3D-DIC技术全场数据同时采集,采集时间短,具有更精细的振型,但图像的数据量大,数据传输和分析时间长,同时这种基于位移的测试方法存在本底噪声限制。
- Abstract:
- The full-field mode shape is important for studying the structural dynamic characteristics of the engine structure. The test principles of two full-field vibration test methods based on 3D-SLDV and high-speed 3D-DIC are introduced. Taking the impeller of liquid rocket engines as an example, the natural frequency and mode shape of the impeller within 5 kHz are obtained by using two technologies respectively, and the advantages and disadvantages of the two test methods are compared and analyzed. Compared with 3D-DIC, the displacement noise floor of 3D-SLDV technology is lower, which is more beneficial to the identification of high-frequency mode shapes, but this method belongs to the point-by-point scanning test, and the test time is long. 3D-DIC technology collects the full-field data simultaneously, its acquisition time is short, and it has a more refined mode shape. However, the amount of image data is large, and it takes a long time to download and analyze the data. At the same time, this displacement-based measurement method cannot identify the displacement below the noise floor.
参考文献/References:
[1] 李斌, 闫松, 杨宝锋, 大推力液体火箭发动机结构中的力学问题[J]. 力学进展,2021, 51(4): 831-864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864.
[2]杜大华, 黄道琼, 黄金平, 等. 火箭发动机涡轮盘模态影响因素与振动安全性分析[J]. 火箭推进, 2021, 47(1): 21-28.
DU D H, HUANG D Q, HUANG J P, et al. Analysis on modal influence factors and vibration safety of rocket engine turbine disk[J]. Journal of Rocket Propulsion, 2021, 47(1): 21-28.
[3]VAN DER AUWERAER H, STEINBICHLER H, VANLANDUIT S, et al. Application of stroboscopic and pulsed-laser electronic speckle pattern interferometry(ESPI)to modal analysis problems[J]. Measurement Science and Technology, 2002, 13(4): 451-463.
[4]LIU Y B, DAI X J, QI J K, et al. Vibration characteristics of pipe based on panoramic amplitude-fluctuation electronic speckle pattern interferometry[J]. Measurement, 2022, 202: 111802.
[5]STANBRIDGE A B, EWINS D J. Modal testing using a scanning laser Doppler vibrometer[J]. Mechanical Systems and Signal Processing, 1999, 13(2): 255-270.
[6]PETROV V, POGODA A,SEMENTIN V,et al.Advances in digital holographic interferometry[J]. Journal of Imaging, 2022, 8(7): 196.
[7]OLIVER D E, SCHUESSLER M. Fully automated robot-based 3-dimensional vibration measurement system for modal analysis and structural health monitoring[C]//IMAC-XXVII. Orlando, Florida:[s.n.], 2009.
[8]YAN S, LI B, LI F, et al. Finite element model updating of liquid rocket engine nozzle based on modal test results obtained from 3-D SLDV technique[J]. Aerospace Science and Technology, 2017, 69: 412-418.
[9]闫松, 李斌, 李斌潮, 等, 三维扫描测振技术在液体火箭发动机模态试验中的应用[J]. 宇航学报,2017, 38(1): 97-103.
YAN S, LI B, LI B C, et al. Application of 3-D scanning vibrometry technique in liquid rocket engine modal test[J]. Journal of Astronautics, 2017, 38(1): 97-103.
[10]BEBERNISS T J, EHRHARDT D A. High-speed 3D digital image correlation vibration measurement: recent advancements and noted limitations[J]. Mechanical Systems and Signal Processing, 2017, 86: 35-48.
[11]CHEN Z, ZHANG X M, FATIKOW S. 3D robust digital image correlation for vibration measurement[J]. Applied Optics, 2016, 55(7): 1641-1648.
[12]YANG R S, DING C X, YANG L Y, et al. Study of decoupled charge blasting based on high-speed digital image correlation method[J]. Tunnelling and Underground Space Technology, 2019, 83: 51-59.
[13]程月华, 吴昊, 薛一江, 等. 高速3D-DIC测试技术在装甲钢贯穿试验中的应用[J]. 爆炸与冲击, 2022, 42(10): 109-123.
CHENG Y H, WU H, XUE Y J, et al. Application of high-speed 3D-DIC measurement technology in perforation test of armor steel[J]. Explosion and Shock Waves, 2022, 42(10): 109-123.
[14]RIZO-PATRON S S, SIROHI J. Operational modal analysis of a rotating cantilever beam using high-speed digital image correlation[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: AIAA, 2016.
[15]SCHMIDT T E, TYSON J, GALANULIS K, et al. Full-field dynamic deformation and strain measurements using high-speed digital cameras[C]//SPIE 5580.[S.l.]:[s.n.], 2005.
[16]TREBUNˇA F, HAGARA M. Experimental modal analysis performed by high-speed digital image correlation system[J]. Measurement, 2014, 50: 78-85.
[17]BEBERNISS T, EHRHARDT D A. Temporal aliasing in high-speed 3-dimensional digital image correlation vibration measurement[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: AIAA, 2015.
[18]EHRHARDT D A, ALLEN M S, YANG S F, et al. Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation[J]. Mechanical Systems and Signal Processing, 2017, 86: 82-97.
[19]PAN B, WU D F, YU L P. Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments[J]. Applied Optics, 2012, 51(19): 4409-4419.
[20]DI LORENZO E, LAVA P, BALCAEN R, et al. Full-field modal analysis using high-speed 3D digital image correlation[J]. Journal of Physics: Conference Series, 2018, 1149: 012007.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(02):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(02):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(02):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(02):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(02):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(02):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(02):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(02):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(02):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(02):15.
备注/Memo
收稿日期:2023- 04- 26 修回日期:2023- 06- 04
基金项目:国家重点实验室基金(HTKJ2021KL011004)
作者简介:闫松(1988—),男,博士,高级工程师,研究领域为液体火箭发动机结构动力学、视觉测量技术。