PDF下载 分享
[1]薛翔,陈金利,王浩明,等.深空探测核电推进航天器的热电转换技术方案评估[J].火箭推进,2024,50(04):55-65.[doi:10.3969/j.issn.1672-9374.2024.04.005]
 XUE Xiang,CHEN Jinli,WANG Haoming,et al.Evaluation of thermoelectric conversion technology for nuclear electric propulsion spacecraft in deep space exploration[J].Journal of Rocket Propulsion,2024,50(04):55-65.[doi:10.3969/j.issn.1672-9374.2024.04.005]
点击复制

深空探测核电推进航天器的热电转换技术方案评估

参考文献/References:

[1] 张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[2]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[3]张振寰. 基于MW级月球货运火箭的空间核电推进系统性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[4]刘秀婷. 基于MW级布雷顿循环的空间核热电双模式系统性能优化[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[5]李强, 李家文, 王戈, 等. 新型空间双模式核热推进系统热力学性能研究[J]. 火箭推进, 2018, 44(6): 21-28.
LI Q, LI J W, WANG G, et al. Research on thermodynamic performance of a new aerospace nuclear thermal propulsion system[J]. Journal of Rocket Propulsion, 2018, 44(6): 21-28.
[6]陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6): 1-10.
CHEN J, GAO S L, XIA C C, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10.
[7]林庆国, 王浩明, 程诚. 基于氢化镁的核电/核热双模共质空间核动力技术[J]. 上海航天, 2019, 36(6): 114-120.
LIN Q G, WANG H M, CHENG C. Nuclear electric/thermal dual-mode space nuclear propulsion technology based on magnesium hydride[J]. Aerospace Shanghai, 2019, 36(6): 114-120.
[8]王浩明, 薛翔, 张银勇, 等. 空间闭式布雷顿循环旁路调节特性分析[J]. 火箭推进, 2021, 47(2): 61-67.
WANG H M, XUE X, ZHANG Y Y, et al. Analysis of bypass regulation characteristics for space closed Brayton cycle system[J]. Journal of Rocket Propulsion, 2021, 47(2): 61-67.
[9]BARNET T, JOHN W. Nuclear electric propulsion technologies: Overview of the NASA/DoE/DoD nuclear electric propulsion workshop[J]. Sensors, 2014, 14(3): 4831-4855.
[10]MASON L S. A power conversion concept for the Jupiter icy moons orbiter[J]. Journal of Propulsion and Power, 2004, 20(5): 902-910.
[11]ORIOL S, MASSON F, TINSLEY T, et al. DEMOCRITOS: development logic for a demonstrator preparing nuclear-electric spacecraft[C]//2016 Nuclear and Emerging Technologies for Space(NETS 2016). Huntsville: [s.n.], 2016.
[12]KOROTEEV A S, KAREVSKIY A V, LOVTSOV A S, et al. Study of operation of power and propulsion system based on closed Brayton cycle power conversion unit and electric propulsion[R]. IEPC-2019-A187, 2019.
[13]JANSEN F, GRUNDMANN J T, MAIWALD V, et al. High power electric propulsion: MARS plus EUROPA-already beyond 2025[C]//36th International Electric Propulsion Conference. Vienna: [s.n.], 2019.
[14]周成, 张笃周, 李永, 等. 空间核电推进技术发展研究[J]. 空间控制技术与应用, 2013, 39(5): 1-6.
ZHOU C, ZHANG D Z, LI Y, et al. On the development of nuclear electric propulsion technology[J]. Aerospace Control and Application, 2013, 39(5): 1-6.
[15]LIU H Q, CHI Z R, ZANG S S. Optimization of a closed Brayton cycle for space power systems[J]. Applied Thermal Engineering, 2020, 179: 115611.
[16]HU H M, GUO C H, CAI H F, et al. Dynamic characteristics of the recuperator thermal performance in a S-CO2 Brayton cycle[J]. Energy, 2021, 214: 119017.
[17]ZHAO H, DENG Q H, HUANG W T, et al. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(8): 081602.
[18]薛翔, 杜磊, 王浩明, 等. 闭式布雷顿循环核心机调控过程仿真分析[J]. 火箭推进, 2021, 47(5): 49-55.
XUE X, DU L, WANG H M, et al. Simulation analysis of adjustment and control process for core machine in closed Brayton cycle[J]. Journal of Rocket Propulsion, 2021, 47(5): 49-55.
[19]郭凯伦, 王成龙, 秋穗正, 等. 兆瓦级核电推进系统布雷顿循环热电转换特性分析[J]. 原子能科学技术, 53(1): 17-23.
[20]冯致远, 张昊春, 吉宇, 等. 航天器核动力推进系统热力学性能研究[J]. 载人航天, 2016, 22(6): 797-804.
FENG Z Y, ZHANG H C, JI Y, et al. Study on thermodynamic performance of nuclear power propulsion system in spacecraft[J]. Manned Spaceflight, 2016, 22(6): 797-804.
[21]郑开云. 超临界二氧化碳布雷顿循环效率分析[J]. 发电设备, 2017, 31(5): 305-309.
ZHENG K Y. Efficiency analysis for supercritical carbon dioxide brayton cycles[J]. Power Equipment, 2017, 31(5): 305-309.
[22]侯捷名. 100 kWe级锂冷空间快堆耦合布雷顿循环系统运行特性研究[M]. 上海: 上海交通大学, 2020.
[23]王浩明, 陈金利, 王园丁, 等. 基于运行状态的氦氙布雷顿循环气体组分分析[J]. 火箭推进, 2023, 49(3): 76-82.
WANG H M, CHEN J L, WANG Y D, et al. Gas composition analysis of helium-xenon Brayton cycle based on operating status[J]. Journal of Rocket Propulsion, 2023, 49(3): 76-82.
[24]AIAA. Mass properties control for space systems [R]. 2019.
[25]石佳子. 空间大功率热排放系统的设计与优化[M]. 哈尔滨: 哈尔滨工程大学, 2018.
[26]张绿云, 杨开. 美国SLS重型运载火箭研制特点分析[J]. 国际太空, 2021(11): 43-47.
ZHANG L Y, YANG K. Analysis of the development characteristics of US SLS heavy launch vehicles[J]. Space International, 2021(11): 43-47.
[27]张智, 容易, 秦曈, 等. 重型运载火箭总体技术研究[J]. 载人航天, 2017, 23(1): 1-7.
ZHANG Z, RONG Y, QIN T, et al. Research on overall technology of heavy launch vehicle[J]. Manned Spaceflight, 2017, 23(1): 1-7.
[28]STEVE O, LAURA B, MAX C, et al. Mars opposition piloted nuclear electric propulsion(NEP)-chem vehicle[Z]. 2020.
[29]李智. 空间反应堆动态能量转换系统特性研究[D]. 北京: 清华大学, 2017.
LI Z. Research on the dynamic energy conversion system for space nuclear reactor[D]. Beijing: Tsinghua University, 2017.
[30]GIBSON M A, MASON L S, BOWMAN C, et al. Kilopower, NASA's small fission power system for science and human exploration[C]//12th International Energy Conversion Engineering Conference. Reston, Virginia: AIAA, 2014.
[31]CHAIKEN M. The kilopower space nuclear fission power reactor[R]. GRC-E-DAA-TN68456.
[32]DATAS A, MART A. Thermophotovoltaic energy in space applications: review and future potential[J]. Solar Energy Materials and Solar Cells, 2017, 161: 285-296.
[33]MASON L S. A Comparison of Brayton and stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts[J]. American Institute of Physics, 2001, 552(1): 1017-1022.
[34]张明, 蔡晓东, 杜青, 等. 核反应堆空间应用研究[J]. 航天器工程, 2013, 22(6): 119-126.
ZHANG M, CAI X D, DU Q, et al. Research on nuclear reactor in space application[J]. Spacecraft Engineering, 2013, 22(6): 119-126.
[35]ZIKA M J, WOLLMAN M J. Prometheus project reactor module final report, for naval reactors information[R]. New York: Knolls Atomic Power Laboratory, 2006.
[36]PLUTA P R, SMITH M A, MATTEO D N. SP-100, a flexible technology for space power from 10 s to 100 s of kW[C]//24th Intersociety Energy Conversion Engineering Conference. Washington, D C: [s.n.], 1989.
[37]MENG T, CHENG K, ZHAO F L, et al. Computational flow and heat transfer design and analysis for 1/12 gas-cooled space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 135: 106986.
[38]俄罗斯联邦. 外层空间应用核动力源的独特设计考虑[EB/OL]. https://www.A/AC.105/C.1/2006/NPS/WP.3, 2006.

备注/Memo

收稿日期:2023- 04- 30修回日期:2023- 06- 13
基金项目:上海市科学技术委员会科研计划(19DZ1206502)
作者简介:薛 翔(1992—),男,博士,高级工程师,研究领域为空间核电推进系统技术开发。
通信作者:王浩明(1985—),男,博士,高级工程师,研究领域为空间高效热电系统优化设计。

更新日期/Last Update: 1900-01-01