航天推进技术研究院主办
SUN Bin,CHEN Xuejiao,SUN Haiyun,et al.Research progress of drag reduction agent for rocket kerosene[J].Journal of Rocket Propulsion,2024,50(05):23-32.[doi:10.3969/j.issn.1672-9374.2024.05.002]
火箭煤油减阻剂的研究进展
- Title:
- Research progress of drag reduction agent for rocket kerosene
- 文章编号:
- 1672-9374(2024)05-0023-10
- Keywords:
- rocket kerosene; polymer; drag reduction; drag reduction agent; mechanism
- 分类号:
- O63
- 文献标志码:
- A
- 摘要:
- 在火箭煤油中加入减阻剂是提高其在管道中的流动能力和降低能耗的有效手段,具有成本低、工艺简单、效果显著和可靠性高等特点。综述了减阻剂的种类、添加量、相对分子量、管径、流体流速、雷诺数、流体温度和热流密度等工况参数对火箭煤油减阻和换热特性的影响,从分子动力学模拟和计算流体动力学模拟两个方面介绍了火箭煤油减阻剂对减阻和换热数值模拟的研究进展,实验研究和数值模拟结果都指出了减阻与传热恶化相矛盾的核心科学问题亟待解决,总结了黏弹性聚合物的减阻率提升机制、聚合物分子断裂和解聚的减阻率退化机制,进一步从实验研究、数值模拟和机理探究这3个角度指出减阻研究的发展方向,期望为新型高效减阻剂的开发和应用提供参考。
- Abstract:
- Adding drag reduction agent to rocket kerosene is an effective means to improve its flow capacity in pipelines and reduce energy consumption, which is characterized by low cost, simple process, significant effect and high reliability. The type, addition amount and relative molecular weight of drag reduction agent, as well as the working condition parameters such as pipe diameter, flow rate, Reynolds number, fluid temperature and heat flow density on the drag reduction and heat transfer characteristics of rocket kerosene are reviewed. The progress of numerical simulation of the drag reduction and heat transfer by rocket kerosene drag reduction agent is introduced from the aspects of molecular dynamics simulation and computational fluid dynamics simulation. Both experimental studies and numerical simulation results have pointed out the core scientific problem of drag reduction in contradiction to heat transfer deterioration that urgently needs to be solved. The enhancement mechanism of drag reduction of viscoelastic polymer and the degradation mechanism by molecular scission and de-aggregation of polymer are summarized. The direction of drag reduction research are further pointed out from the aspects of experimental studies, numerical simulations and mechanism investigations. The aim is to provide necessary reference information for the development and application of novel drag reduction agents with high-efficiency.
参考文献/References:
[1] DINDA S, VUCHURU K, KONDA S, et al. Heat management in supersonic/hypersonic vehicles using endothermic fuel: perspective and challenges[J]. ACS Omega, 2021, 6(40): 26741-26755.
[2]张晓军, 高玉闪, 杨永强, 等. 我国液氧煤油发动机技术发展概述[J]. 中国航天, 2023(5): 9-15.
ZHANG X J, GAO Y S, YANG Y Q, et al. Overview of the development of liquid oxygen/kerosene engine technology in China[J]. Aerospace China, 2023(5): 9-15.
[3]LIU Y Y, CHEN R, LIU J, et al. Research progress of catalysts and initiators for promoting the cracking of endothermic hydrocarbon fuels[J]. Transactions of Tianjin University, 2022, 28(3): 199-213.
[4]WANG C, DU C P, SHANG J X, et al. A comprehensive review of the thermal cracking stability of endothermic hydrocarbon fuels[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105867.
[5]ZUO J Y, ZHANG S L, WEI J F, et al. Effects of inflow parameters on thermal protection and drag reduction characteristics for hydrocarbon fueled supersonic film with combustion[J]. Case Studies in Thermal Engineering, 2023, 43: 102822.
[6]赵宏亮, 张蒙正. 超燃冲压发动机推阻力特性研究综述[J]. 火箭推进, 2014, 40(6): 44-50.
ZHAO H L, ZHANG M Z. Investigation of thrust/drag property of scramjet[J]. Journal of Rocket Propulsion, 2014, 40(6): 44-50.
[7]唐亮, 李平, 周立新. 液体火箭发动机液膜冷却研究综述[J]. 火箭推进, 2020, 46(1): 1-12.
TANG L, LI P, ZHOU L X. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion, 2020, 46(1): 1-12.
[8]CHENG X, BI Q C, LAN H P, et al. Flow and heat transfer characteristics of coal-based rocket kerosene in mini-tube with ultra-high parameters[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106099.
[9]潘利生, 郝亨隆, 姚子康, 等. 高速飞行器减阻降热研究进展[J]. 力学进展, 2023, 53(4): 793-818.
PAN L S, HAO H L, YAO Z K, et al. Current status of research on reducing drag and cooling of high-speed aircraft[J]. Advances in Mechanics, 2023, 53(4): 793-818.
[10]WEI J F, ZHANG S L, WANG H Y, et al. Effects of fuel conversion ratio on cooling and drag reduction performance for supersonic film using gaseous hydrocarbon fuel[J]. Applied Thermal Engineering, 2022, 216: 119181.
[11]BOROVIK I, STROKACH E, KOZLOV A, et al. Influence of polyisobutylene kerosene additive on combustion efficiency in a liquid propellant rocket engine[J]. Aerospace, 2019, 6(12): 129.
[12]RUSHD S, FERROUDJI H, YOUSUF H, et al. Applications of drag reducers for the pipeline transportation of heavy crude oils: A critical review and future research directions[J]. The Canadian Journal of Chemical Engineering, 2024, 102(1): 438-458.
[13]IVCHENKO P V, NIFANT'EV I E, TAVTORKIN A V. Polyolefin drag reducing agents(review)[J]. Petroleum Chemistry, 2016, 56(9): 775-787.
[14]GUERSONI V C B, BANNWART A C, DESTEFANI T, et al. Comparative study of drag reducers for light hydrocarbon flow[J]. Petroleum Science and Technology, 2015, 33(8): 943-951.
[15]HASSANEAN M H, AWAD M E, MARWAN H, et al. Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow[J]. Egyptian Journal of Petroleum, 2016, 25(1): 39-44.
[16]LEE K H, ZHANG K, CHOI H J. Time dependence of turbulent drag reduction efficiency of polyisobutylene in kerosene[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 499-502.
[17]GLUSHKOV D O, KUZNETSOV G V, NIGAY A G, et al. Influence of gellant and drag-reducing agent on the ignition characteristics of typical liquid hydrocarbon fuels[J]. Acta Astronautica, 2020, 177: 66-79.
[18]李文端, 李天华, 张洁辉, 等. 聚甲基丙烯酸癸酯溶液的减阻性能和抗剪切性能的研究[J]. 油田化学, 1990, 7(2): 156-161.
LI W D, LI T H, ZHANG J H, et al. Studies on drag reduction effectiveness and resistance to degradation of poly(decyl methacrylate)solution[J]. Oilfield Chemistry, 1990, 7(2): 156-161.
[19]杨士林, 朱勤勤, 吴国光, 等. 油品流动减阻剂的研制(Ⅰ): EP 型减阻剂[J]. 油田化学, 1985, 2(2): 123-130.
YANG S L, ZHU Q Q, WU G G, et al. Reduction of turbulent drag in the flow of fuel oils by dilute polymer solutions(Ⅰ): By ethylene-propylene copolymers[J]. Oilfield Chemistry, 1985, 2(2): 123-130.
[20]GAPONOV V D, CHVANOV V K, FATUEV I Y, et al. The investigation of influence polyisobutilene additions to kerosene at the efficiency of combustion[J]. Heat Analysis and Thermodynamic Effects, 2011, 14: 295-312.
[21]杜宗罡, 朱成财, 吴金, 等. 火箭煤油降阻技术研究[J]. 火箭推进, 2017, 43(6): 32-37.
DU Z G, ZHU C C, WU J, et al. Investigation on drag-reduction technology of rocket kerosene[J]. Journal of Rocket Propulsion, 2017, 43(6): 32-37.
[22]杜宗罡, 符全军, 韩伟, 等. 液体火箭降阻煤油及其制备方法: CN106929109A[P]. 2017-07-07.
[23]罗玉宏, 游岳, 蒋榕培, 等. 添加减阻剂的火箭煤油流阻与传热特性研究[J]. 火箭推进, 2018, 44(5): 66-70.
LUO Y H, YOU Y, JIANG R P, et al. Study on flow resistance and heat transfer characteristics of rocket kerosene adding drag reducer[J]. Journal of Rocket Propulsion, 2018, 44(5): 66-70.
[24]阳倦成, 李凤臣, 周文武, 等. 黏弹性流体基铜纳米流体流动与传热实验研究[J]. 工程热物理学报, 2014, 35(2): 366-370.
YANG J C, LI F C, ZHOU W W, et al. Experimental investigation on flow and heat transfer of a viscoelastic fluid based Cu nanofluids[J]. Journal of Engineering Thermophysics, 2014, 35(2): 366-370.
[25]SUN B, ZHANG Z M, YANG D. Improved heat transfer and flow resistance achieved with drag reducing Cu nanofluids in the horizontal tube and built-in twisted belt tubes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 69-82.
[26]张赞坚, 刘朝晖, 潘辉, 等. 低流阻火箭煤油的超临界压力流动与换热特性[J]. 西安交通大学学报, 2019, 53(1): 129-134.
ZHANG Z J, LIU Z H, PAN H, et al. Flow and heat transfer characteristics of low-flow resistance rocket kerosene under supercritical pressure[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 129-134.
[27]陈彦伯. 超临界压力下降阻煤油换热特性实验研究[D]. 西安: 西安建筑科技大学, 2019.
CHEN Y B. Experimental study on heat transfer characteristics of kerosene with supercritical pressure drop resistance[D]. Xi'an: Xi'an University of Architecture and Technology, 2019.
[28]GUO X D, CHEN X J, ZHOU W J, et al. Effect of polymer drag reducer on rheological properties of rocket kerosene solutions[J]. Materials, 2022, 15(9): 3343.
[29]MÜLLER-PLATHE F. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59(5): 4894-4898.
[30]LEN M, RAMASAMY U S, LICHTER S, et al. Thickening mechanisms of polyisobutylene in polyalphaolefin[J]. Tribology Letters, 2017, 66(1): 5.
[31]KIM K, ADRIAN R J, BALACHANDAR S, et al. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction[J]. Physical Review Letters, 2008, 100(13): 134504.
[32]PEREIRA A S, MOMPEAN G, SOARES E J. Modeling and numerical simulations of polymer degradation in a drag reducing plane Couette flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 256: 1-7.
[33]WHITE C M, MUNGAL M G. Mechanics and prediction of turbulent drag reduction with polymer additives[J]. Annual Review of Fluid Mechanics, 2008, 40(1): 235-256.
[34]DIMITROPOULOS C D, DUBIEF Y, SHAQFEH E S G, et al. Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow[J]. 2004, 17(1): 011705.
[35]杜宗罡, 史雪梅, 单世群, 等. 减阻航天煤油减阻机理与传热规律数值模拟[J]. 火箭推进, 2022, 48(1): 76-82.
DU Z G, SHI X M, SHAN S Q, et al. Numerical study on flow drag reduction mechanism and heat transfer process of polymer drag reducing rocket kerosene[J]. Journal of Rocket Propulsion, 2022, 48(1): 76-82.
[36]LI B, LI W X, ZHENG X, et al. Numerical study on influences of drag reducing additive in supercritical flow of kerosene in a millichannel[J]. Energies, 2021, 14(20): 6758.
[37]ZHONG F Q, FAN X J, YU G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.
[38]唐明明. 减阻剂对煤油超临界流动与换热特性影响的数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[39]张文华. 黏弹性流体湍流减阻机理研究[D]. 北京: 中国石油大学(北京), 2018.
[40]李巍, 黄伟, 开金河. 减阻剂发展现状及在庆咸管道的应用[J]. 化学工程与装备, 2012(9): 140-142.
LI W, HUANG W, KAI J H. Development status of drag reducer and its application in Qingxian pipeline[J]. Chemical Engineering & Equipment, 2012(9): 140-142.
[41]ABUBAKAR A, AL-WAHAIBI Y, AL-WAHAIBI T, et al. Effect of pipe diameter on horizontal oil-water flow before and after addition of drag-reducing polymer(part I): flow patterns and pressure gradients[J]. Journal of Petroleum Science and Engineering, 2017, 153: 12-22.
[42]ABDULBARI H A, AMIR R. Drag reduction performance and stability of an organic polymer, surfactant, and their complexes[J]. Chemical Engineering & Technology, 2021, 44(12): 2333-2340.
[43]ELBING B R, WINKEL E S, SOLOMON M J, et al. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow[J]. Experiments in Fluids, 2009, 47(6): 1033-1044.
[44]SHETTY A M, SOLOMON M J. Aggregation in dilute solutions of high molar mass poly(ethylene)oxide and its effect on polymer turbulent drag reduction[J]. Polymer, 2009, 50(1): 261-270.
[45]ZHAO M W, LIU S C, DAI C L, et al. Development and drag reduction behaviors of a water-in-water emulsion polymer drag reducer[J]. ACS Applied Polymer Materials, 2023, 5(5): 3707-3716.
[46]ASIDIN M A, SUALI E, JUSNUKIN T, et al. Review on the applications and developments of drag reducing polymer in turbulent pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1921-1932.
[47]VARSHNEY A, STEINBERG V. Drag enhancement and drag reduction in viscoelastic flow[J]. Physical Review Fluids, 2018, 3(10): 103302.
[48]TOMS B A, STRAWBRIDGE D J. Elastic and viscous properties of dilute solutions of polymethyl methacrylate in organic liquids[J]. Transactions of the Faraday Society, 1953, 49(1): 1225-1232.
[49]张波. 管道减阻剂实验评价系统[D]. 济南: 山东大学, 2010.
[50]NESYN G V, MANZHAI V N, SULEIMANOVA Y V, et al. Polymer drag-reducing agents for transportation of hydrocarbon liquids: Mechanism of action, estimation of efficiency, and features of production[J]. Polymer Science Series A, 2012, 54(1): 61-67.
[51]钱锦文, 王甦畛, 刘晓林, 等. 乙丙共聚物减阻和抗剪切性的研究[J]. 浙江大学学报, 1986, 20(3): 25-32.
QIAN J W, WANG S C, LIU X L, et al. Studies on reduction effectiveness and shearing resistance of ethyene-propylene copolymer[J]. Journal of Zhejiang University, 1986, 20(3): 25-32.
[52]DOS SANTOS W R, SPALENZA CASER E, SOARES E J, et al. Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104223.
[53]STEELE A, BAYER I S, LOTH E. Pipe flow drag reduction effects from carbon nanotube additives[J]. Carbon, 2014, 77: 1183-1186.
[54]SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104225.
[55]HORN A F, MERRILL E W. Midpoint scission of macromolecules in dilute solution in turbulent flow[J]. Nature, 1984, 312: 140-141.
[56]YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica Acta, 1981, 20(2): 163-178.
[57]KIM O K, LITTLE R C, PATTERSON R L, et al. Polymer structures and turbulent shear stability of drag reducing solutions[J]. Nature, 1974, 250: 408-410.
[58]CHURCH D C, PETERSON G I, BOYDSTON A J. Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields[J]. ACS Macro Letters, 2014, 3(7): 648-651.
[59]O'NEILL R T, BOULATOV R. Experimental quantitation of molecular conditions responsible for flow-induced polymer mechanochemistry[J]. Nature Chemistry, 2023, 15(9): 1214-1223.
[60]STRIEGEL A M. Influence of chain architecture on the mechanochemical degradation of macromolecules[J]. Journal of Biochemical and Biophysical Methods, 2003, 56(1/2/3): 117-139.
[61]CUSSUOL J D, SOARES E J, SIQUEIRA R N, et al. Polymer drag reduction regeneration[J]. Journal of Non-Newtonian Fluid Mechanics, 2023, 321: 105126.
[62]KALASHNIKOV V N. Degradation accompanying turbulent drag reduction by polymer additives[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 103(2/3): 105-121.
相似文献/References:
[1]青勤,一,夏本立,等.基于模糊理论的航天发射场火箭煤油
贮存泄漏风险研究[J].火箭推进,2009,35(05):60.
Qing Qinl,Xia Benli,Cong Jixin,et al.Study on the leaking risk of rocket kerosene stored
on 1aunching。based fuzzy theory_aunchingsite on tuzzy theory[J].Journal of Rocket Propulsion,2009,35(05):60.
[2]杜宗罡,朱成财,吴金,等.火箭煤油降阻技术研究[J].火箭推进,2017,43(06):32.
DU Zonggang,ZHU Chengcai,WU Jin,et al.Investigation on drag-reduction technology of rocket kerosene[J].Journal of Rocket Propulsion,2017,43(05):32.
[3]罗玉宏,游岳,蒋榕培,等.添加减阻剂的火箭煤油流阻与传热特性研究[J].火箭推进,2018,44(05):66.
LUO Yuhong,YOU Yue,JIANG Rongpei,et al.Study on flow resistance and heat transfer characteristics of rocket kerosene adding drag reducer[J].Journal of Rocket Propulsion,2018,44(05):66.
[4]杜宗罡,史雪梅,单世群,等.减阻航天煤油减阻机理与传热规律数值模拟[J].火箭推进,2022,48(01):76.
DU Zonggang,SHI Xuemei,SHAN Shiqun,et al.Numerical study on flow drag reduction mechanism and heat transfer process of polymer drag reducing rocket kerosene[J].Journal of Rocket Propulsion,2022,48(05):76.
备注/Memo
收稿日期:2024- 02- 23修回日期:2024- 05- 06
基金项目:国家自然科学基金(22127802)
作者简介:孙 彬(1997—),男,博士,研究领域为航空航天推进剂化学。
通信作者:方文军(1967—),男,博士,教授,研究领域为液体推进剂化学。