PDF下载 分享
[1]于君,冯弦,韩伟,等.三种胶黏剂与航天煤油相容性分析[J].火箭推进,2024,50(05):122-129.[doi:10.3969/j.issn.1672-9374.2024.05.012]
 YU Jun,FENG Xian,HAN Wei,et al.Analysis on compatibility for three kinds of adhesives with aerospace kerosene[J].Journal of Rocket Propulsion,2024,50(05):122-129.[doi:10.3969/j.issn.1672-9374.2024.05.012]
点击复制

三种胶黏剂与航天煤油相容性分析

参考文献/References:

[1] EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[2]马瀚英. 航天煤油[M]. 北京: 中国宇航出版社, 2003: 1-7.
[3]王镜淇,王成刚,陈雪娇,等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进,2022,48(6):101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[4]韩伟, 杨超, 兰海平, 等. 煤基与石油基航天煤油掺混理化性能[J]. 火箭推进, 2019, 45(2): 60-65.
HAN W, YANG C, LAN H P, et al. Physical and chemical properties of blended fuel of coal-based and petroleum-based space kerosene[J]. Journal of Rocket Propulsion, 2019, 45(2): 60-65.
[5]余锋, 李娟娟, 岳兵, 等. 材料与航天煤油相容性试验研究[J]. 航天制造技术, 2013(3): 17-21.
YU F, LI J J, YUE B, et al. Experimental study on the compatibility of material with kerosene[J]. Aerospace Manufacturing Technology, 2013(3): 17-21.
[6] 杜宗罡,史雪梅,单世群,等. 减阻航天煤油减阻机理与传热规律数值模拟[J]. 火箭推进,2022,48(1):76-82.
DU Z G, SHI X M, SHAN S Q, et al. Numerical study on flow drag reduction mechanism and heat transfer process of polymer drag reducing rocket kerosene[J]. Journal of Rocket Propulsion, 2022,48(1):76-82.
[7]赵云峰. 航天特种高分子材料研究与应用进展[J]. 中国材料进展, 2013, 32(4): 217-228.
ZHAO Y F. Progress on research and application of special polymer materials in aerospace industry[J]. Materials China, 2013, 32(4): 217-228.
[8]赵飞明, 赵云峰, 陈江涛. 航天胶粘剂的性能与应用[J]. 粘接, 2014, 35(12): 42-45.
ZHAO F M, ZHAO Y F, CHEN J T. Performance and application of aerospace adhesives[J]. Adhesion, 2014, 35(12): 42-45.
[9]王彬, 杨瑞生, 郑卫东, 等. 运载火箭共底贮箱加注过程非稳态温度分布数值模拟[J]. 化工学报, 2020, 71(Sup.1): 68-76.
WANG B, YANG R S, ZHENG W D, et al. Numerical simulations on unsteady temperature distribution of sandwich bulkhead tank in launch vehicle[J]. CIESC Journal, 2020, 71(Sup.1): 68-76.
[10]李茂, 韩涵, 唐杰, 等. 大温差隔热共底在运载贮箱中的应用研究[J]. 上海航天, 2016, 33(Sup.1): 43-49.
LI M, HAN H, TANG J, et al. Application of PMI foam cored sandwich bulkhead tank in launch vehicle[J]. Aerospace Shanghai(Chinese & English), 2016, 33(Sup.1): 43-49.
[11]李照谦, 南博华, 何腾锋, 等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺, 2016, 46(4): 68-72.
LI Z Q, NAN B H, HE T F, et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle[J]. Aerospace Materials & Technology, 2016, 46(4): 68-72.
[12]郭平军, 梁国正, 张增平. 胶粘剂在航天工业中的应用[J]. 中国胶粘剂, 2009, 18(3): 56-60.
GUO P J, LIANG G Z, ZHANG Z P. Application of adhesives in aerospace industry[J]. China Adhesives, 2009, 18(3): 56-60.
[13]唐梅, 孙丽荣, 常青, 等. 胶粘剂在航天领域的应用[J]. 化学与粘合, 2002, 24(4): 171-172.
TANG M, SUN L R, CHANG Q, et al. Organic adhesives applied in aerospace industry[J]. Chemistry and Adhesion, 2002, 24(4): 171-172.
[14]李协平, 王洪奎. 超低温胶粘剂及其在航天运载器上的应用[J]. 粘接, 1989, 16(2): 1-6.
LI X P,WANG H K. The cryogenic adhesives and their applications in rocket and spacecraft[J]. Adhesion in China, 1989, 16(2): 1-6.
[15]张建峰. 碳纤维增强树脂基复合材料低温液氧相容性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
ZHANG J F. Study on compatibility of carbon fiber reinforced resin matrix composites with liquid oxygen at low temperature[D]. Harbin: Harbin Institute of Technology, 2010.
[16]王戈, 刘长军, 李效东, 等. 聚合物基复合材料在液氧贮箱中的应用研究[J]. 宇航材料工艺, 2004, 34(1): 16-22.
WANG G, LIU C J, LI X D, et al. Study on application of polymer composites in liquid oxygen tank[J]. Aerospace Materials & Technology, 2004, 34(1): 16-22.
[17]CHAMBERLAIN D L, IRWIN K C, KIRSHEN N A, et al. Investigation of reactivity of launch vehicle materials with liquid oxygen[Z]. 1968.
[18]SPIES O R. Initiation and growth of explosions in liquids and solids[J]. Journal of the Franklin Institute, 1953, 255(2): 155-156.
[19]ASTM复合材料委员会.夹层结构平面拉伸强度标准试验方法:ASTM C 297[S]. 华盛顿:美国国防部, 2015.
[20]吴金林. 低温导热绝缘胶粘剂研究[J]. 低温工程, 1998(3): 51-54.
WU J L. Study of the adhesive of low temperature heat conduction and insulation[J]. Cryogenics, 1998(3): 51-54.
[21]孙培杰, 李鹏, 张振涛, 等. 新一代运载火箭共底贮箱隔热性能试验及环境预示[J]. 上海航天, 2014, 31(5): 54-59.
SUN P J,LI P,ZHANG Z T, et al. Experimental and numerical investigation of heat insulation performances of coplanar tanks in new generation launch vehicle[J]. Aerospace Shanghai, 2014, 31(5): 54-59.
[22]杨俊峰. 电子万能试验机的设计研究与应用[D]. 杭州: 浙江大学, 2021.
YANG J F. Design, research and application of electronic universal testing machine[D]. Hangzhou: Zhejiang University, 2021.
[23]朱鸿梅. 玻璃钢低温粘接性能的研究[D]. 上海: 上海交通大学, 2007.
ZHU H M. Study on low temperature bonding properties of FRP[D]. Shanghai: Shanghai Jiao Tong University, 2007.

相似文献/References:

[1]兰海平,田青凤.火箭发动机清洗用氟里昂替代物的研究[J].火箭推进,2004,(04):55.
 Lan Haiping,Tian Qingfeng.Research on the Freon Replacement Cleaning Agent for Rocket Engine[J].Journal of Rocket Propulsion,2004,(05):55.
[2]马海瑞,张万卿,姜 潮.氟塑料-阀芯黏结工艺[J].火箭推进,2020,46(02):92.
 MA Hairui,ZHANG Wanqing,JIANG Chao.Research on bonding process of fluoroplastic-valve spool[J].Journal of Rocket Propulsion,2020,46(05):92.

备注/Memo

收稿日期:2024- 01- 18修回日期:2024- 08- 22
基金项目:国家重点项目
作者简介:于 君(1981—),女,硕士,高级工程师,研究领域为液体火箭推进剂。

更新日期/Last Update: 1900-01-01