航天推进技术研究院主办
ZHANG Chunwei,MA Junqiang,GUO Jiaxiang,et al.Numerical simulation and visual experiment of solid air growth process in liquid hydrogen[J].Journal of Rocket Propulsion,2024,50(05):138-147.[doi:10.3969/j.issn.1672-9374.2024.05.014]
液氢固空生长数值模拟及可视化实验
- Title:
- Numerical simulation and visual experiment of solid air growth process in liquid hydrogen
- 文章编号:
- 1672-9374(2024)05-0138-10
- 分类号:
- V511+.6
- 文献标志码:
- A
- 摘要:
- 固空已成为制约液氢推进剂大规模安全应用的关键因素之一,但目前对于固空特性的了解仍有待深入。采用数值模拟和低温可视化实验来探究液氢固空的氧氮分布规律和生长特性。结果表明,相场模型可以准确模拟纯扩散和强制对流工况下的固空生长及二次分枝过程。多晶核竞争生长时,固空会相互融合形成多晶共生体,二次枝晶还会增加融合点数量,而强制对流增加了液氢固空的危险性,富氧含量最高可达到53.3%。低温可视化实验装置能够有效观测液氢固空的全周期生长过程,当模拟气中的氧浓度为15%时,固空中的氧相对浓度可达到33.8%,证明了固空的氧富集特性。研究结果可为液氢推进剂安全使用体系的构建提供支撑。
- Abstract:
- Solid air has become one of the key factors restricting the extensive safe application of liquid hydrogen propellant. However, the understanding of solid air characteristics still needs to be deepened. Therefore, numerical simulation and low-temperature visual experiments are used to investigate solid air's oxygen and nitrogen distribution and growth characteristics. The results indicate that the phase field model can accurately simulate solid air growth and secondary branching under pure diffusion and forced convection conditions. During the competitive growth of polycrystalline nuclei, the solid air can fuse to form polycrystalline symbiont, and the secondary dendrites can increase the number of fusion sites. The forced convection can increase the risk of solid air in liquid hydrogen, with the highest oxygen content reaching 53.3%. The low-temperature visual experiment device can effectively observe the full-cycle growth process of solid air in liquid hydrogen. When the oxygen concentration in the simulated gas is 15%, the relative oxygen concentration of solid air can reach 33.8%, proving the oxygen enrichment characteristics of solid air. This research can support constructing a safe use system for liquid hydrogen.
参考文献/References:
[1] 刘柏文,徐元元,雷刚,等.典型低温推进剂的热力学性能参数评估[J]. 火箭推进, 2023, 49(1):44-53.
LIU B W,XU Y Y,LEI G,et al. Evaluation of thermodynamic performance parameters for typical cryogenic propellant[J]. Journal of Rocket Propulsion, 2023, 49(1): 44-53.
[2]张春伟,柴栋栋,马军强,等.低温推进剂致密化技术的发展综述[J]. 火箭推进, 2023, 49(3):1-14.
ZHANG C W,CHAI D D,MA J Q,et al. Review on development of cryogenic propellant densification technology[J]. Journal of Rocket Propulsion, 2023, 49(3):1-14.
[3]张起源. 液氢的危险性综合分析[J]. 国外导弹技术, 1983(7): 50-67.
ZHANG Q Y. Comprehensive analysis of the danger of liquid hydrogen[J]. Missiles and Space Vehicles, 1983(7): 50-67.
[4]LITCHFIELD E, PERLEE H. Fire and explosion hazards of flight vehicle combustibles[EB/OL]. https://www.semanticscholar.org/paper/FIRE-AND-EXPLOSION-HAZ-ARDS-OF-FLIGHT-VEHICLE-Litchfield-Perlee/2678b2482cd5c26a74b2c07c5f7f28b26c4316c6, 1964.
[5]LEE R E. The explosiveness of solid oxygen in liquid hydrogen[Z]. 1952.
[6]CASSUTT L H, MADDOCKS F E, SAWYER W A. A study of the hazards in the storage and handling of liquid hydrogen[M]//TIMMERHAUS K D. Advances in Cryogenic Engineering. Boston, MA: Springer, 1960: 55-61.
[7]张起源. 液氢爆轰和爆炸威力分析[J]. 中国航天, 1982(9): 28-32.
ZHANG Q Y. Detonation and explosive power analysis of liquid hydrogen[J]. Aerospace China, 1982(9): 28-32.
[8]毛宗强. 氢安全[M]. 北京: 化学工业出版社, 2020.
[9]冯庆祥. 固氧在液氢中的行为特性及液氢生产的安全问题[J]. 低温与特气, 1998, 16(1): 55-62.
FENG Q X. Behavior characteristics of solid oxygen in liquid hydrogen and safety problems in liquid hydrogen production[J]. Low Temperature and Specialty Gases, 1998, 16(1): 55-62.
[10]蔡体杰. 液氢生产中若干固氧爆炸事故分析及防爆方法概述[J]. 低温与特气, 1999, 17(3): 52-57.
CAI T J. Analysis of some solid oxygen explosion accidents in liquid hydrogen production and overview of explosion-proof methods[J]. Low Temperature and Specialty Gases, 1999, 17(3): 52-57.
[11]苏嘉南, 刘海生, 安刚. 液氢储罐固态空气沉积试验研究[J]. 低温与超导, 2018, 46(9): 34-38.
SU J N, LIU H S, AN G. Experimental study on sedimentary solid air in liquid hydrogen storage tank[J]. Cryogenics & Superconductivity, 2018, 46(9): 34-38.
[12]刘海生, 刘玉涛, 邱小林. 液氢中固空沉积形式的理论研究[J]. 低温与超导, 2013(8): 26-29.
LIU H S, LIU Y T, QIU X L, et al. Theoretical study of sedimentary formation of solid air in liquid hydrogen[J]. Cryogenics & Superconductivity, 2013(8): 26-29.
[13]刘海生, 张震, 邱小林, 等. 液氢中固空沉积形式的试验研究[J]. 低温工程, 2015(1): 13-16.
LIU H S, ZHANG Z, QIU X L, et al. Experimental study of sedimentary formation of solid air in liquid hydrogen[J]. Cryogenics, 2015(1): 13-16.
[14]余炳延, 苏嘉南, 安刚. 液氢容器复温周期确定方法研究[J]. 低温与超导, 2019, 47(1): 21-25.
YU B Y, SU J N, AN G. Theoretical analysis on reheating cycle of liquid hydrogen container[J]. Cryogenics & Superconductivity, 2019, 47(1): 21-25.
[15]周伟煜, 梁文清, 钱华, 等. 固空沉积的数值模拟[J]. 制冷技术, 2019, 39(1): 21-27.
ZHOU W Y, LIANG W Q, QIAN H, et al. Numerical simulation of sedimentary formation of solid air[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 21-27.
[16]戴闻骁, 雷刚, 郑晓红, 等. 基于LBM-CA模型的自然对流下液氢中固空枝晶生长模拟[J]. 低温工程, 2021(3): 33-39.
DAI W X, LEI G, ZHENG X H, et al. Numerical simulation of air solidification in liquid hydrogen under natural convection with LBM-CA model[J]. Cryogenics, 2021(3): 33-39.
[17]李超龙, 文键, 王磊, 等. 液氢中固空枝晶生长凝固定量相场法研究[J]. 西安交通大学学报, 2023, 57(5): 128-135.
LI C L, WEN J, WANG L, et al. Study on quantitative phase field method of solid-air dendrite growth and solidification in liquid hydrogen[J]. Journal of Xi'an Jiaotong University, 2023, 57(5): 128-135.
[18]LI C L, WEN J, WANG L, et al. Modeling on transient microstructure evolution of solid-air solidification process under continuous cooling in liquid hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(81): 34640-34655.
[19]梁鸽, 王磊, 上官石, 等. 液氢中空气溶解度预测及氮-氧存在模式研究[J]. 西安交通大学学报, 2023, 57(4): 162-170.
LIANG G, WANG L, SHANGGUAN S, et al. Prediction on solubility of air in liquid hydrogen and existing modes of nitrogen and oxygen components[J]. Journal of Xi'an Jiaotong University, 2023, 57(4): 162-170.
备注/Memo
收稿日期:2024- 02- 04修回日期:2024- 03- 11
基金项目:国家自然科学基金(52306020)
作者简介:张春伟(1992—),男,博士,高级工程师,研究领域为低温推进剂热管理、致密化及地外制备等。