航天推进技术研究院主办
HU Wei,LI Jingxuan,YANG Lijun,et al.Review of incomplete-angle background-oriented schlieren tomography[J].Journal of Rocket Propulsion,2024,50(06):1-26.[doi:10.3969/j.issn.1672-9374.2024.06.001]
不完全角度背景纹影层析测量综述
- Title:
- Review of incomplete-angle background-oriented schlieren tomography
- 文章编号:
- 1672-9374(2024)06-0001-26
- Keywords:
- background-oriented schlieren; tomographic technique; three-dimensional reconstruction; incomplete angle; ill-posed inverse problem
- 分类号:
- TK311
- 文献标志码:
- A
- 摘要:
- 实现对非定常流动的三维测量一直是航空航天、能源环境、燃烧诊断等领域的研究重点。背景纹影法是近20年来兴起的一种新型流场测量技术,仅需相机和背景就能动态测量非定常流场,具有大视野、高频动态、低成本、好测量的优势。受空间、成本限制可用的测量光路并不多,背景纹影只能在有限角度内稀疏采集。对不完全角度背景纹影层析测量技术的应用现状和发展进行综述:首先介绍背景纹影成像及层析测量的基本原理和测量系统,分析当前背景层析测量中面临的不完全角度问题; 其次回顾近年来所发展的不完全角度背景纹影层析重建算法; 最后对背景纹影层析测量技术的发展提出展望,认为利用压缩感知和其他非端到端式深度学习等理论,结合丰富的先验信息和其他层析技术,可以为不完全角度背景纹影层析重建问题的解决提供新思路。
- Abstract:
- The three-dimensional measurement of unsteady flow has always been a research focus in fields such as aerospace, energy and environment, and combustion diagnostics. The background-oriented schlieren(BOS)technique has emerged as a novel method for measuring flow dynamics in the past two decades. It allows for the dynamic measurement of unsteady flow using just a camera and a background, offering advantages such as a wide field of view, high-frequency dynamics, cost-effectiveness, and ease of use. However, due to spatial and cost constraints, the available optical paths for BOS are limited, resulting in the sparse collection of background patterns within a restricted angle. This article provides a comprehensive overview of the current status and development of incomplete-angle BOS tomography. It begins by introducing the fundamental principles of BOS imaging and tomographic reconstruction, along with the measurement systems, while analyzing the current incomplete-angle issue encountered in BOS tomographic measurements. Furthermore, it reviews the algorithms for incomplete-angle BOS tomography developed in recent years and concludes by outlining prospects for the future advancement of BOS tomography. It is suggested that leveraging theories such as compressed sensing and other non-end-to-end deep learning approaches, along with rich prior information and other tomographic techniques, could offer new avenues for addressing the reconstruction challenges in the context of incomplete-angle BOS tomography.
参考文献/References:
[1] 张彪, 李智豪, 李健, 等. 基于背景导向纹影的火焰三维温度场重建[J]. 工程热物理学报, 2023, 44(1): 158-161.
ZHANG B, LI Z H, LI J, et al. 3D reconstruction of flame temperature distribution based on background oriented schlieren[J]. Journal of Engineering Thermophysics, 2023, 44(1): 158-161.
[2]刘倩, 李敬轩, 孙纪国, 等. 高压氢氧火箭发动机推力室燃烧稳定性分析[J]. 火箭推进, 2022, 48(2): 66-75.
LIU Q, LI J X, SUN J G, et al. Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 66-75.
[3]蔡华俊, 宋旸, 曹政, 等. 基于背景纹影技术的三维瞬态密度场重建[J]. 气动研究与试验, 2023, 1(6): 79-91.
CAI H J, SONG Y, CAO Z, et al. Reconstruction of 3D instantaneous density field based on background-oriented schlieren technology[J]. Aerodynamic Research & Experiment, 2023, 1(6): 79-91.
[4]杨成虎, 刘犇. 喷雾场测试技术研究进展[J]. 火箭推进, 2010, 36(4): 16-23.
YANG C H, LIU B. Development of diagnostic techniques for spray measurements[J]. Journal of Rocket Propulsion, 2010, 36(4): 16-23.
[5]李自然, 林志勇, 韩旭. 超声速斜爆震发动机起爆过程研究综述[J]. 火箭推进, 2013, 39(3): 1-8.
LI Z R, LIN Z Y, HAN X. Investigation for initiation process of supersonic oblique detonation engine[J]. Journal of Rocket Propulsion, 2013, 39(3): 1-8.
[6]熊渊. 背景纹影测量技术研究与应用进展[J]. 实验流体力学, 2022, 36(2): 30-48.
XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 30-48.
[7]VENKATAKRISHNAN L, MEIER G E A. Density measurements using the background oriented schlieren technique[J]. Experiments in Fluids, 2004, 37(2): 237-247.
[8]BECHER L, GENA A W, ALSAAD H, et al. The spread of breathing air from wind instruments and singers using schlieren techniques[J]. Indoor Air, 2021, 31(6): 1798-1814.
[9]VIOLA I M, PETERSON B, PISETTA G, et al. Face coverings, aerosol dispersion and mitigation of virus transmission risk[J]. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2(1): 26-35.
[10]UNTERBERGER A, MOHRI K. Evolutionary background-oriented schlieren tomography with self-adaptive parameter heuristics[J]. Optics Express, 2022, 30(6): 8592.
[11]BOUDREAUX P, VENKATAKRISHNAN S, IFFA E, et al. Application of reference-free natural background-oriented schlieren photography for visualizing leakage sites in building walls[J]. Building and Environment, 2022, 223(2): 109529.
[12]SUN L J, JIA C H, MIAO Y. Visualization of hydrogen leak for electro-hydrogen coupled system based on background oriented schlieren[J]. Process Safety and Environmental Protection, 2023, 175(1): 437-446.
[13]GARDNER A D, WOLF C C, RAFFEL M. Review of measurement techniques for unsteady helicopter rotor flows[J]. Progress in Aerospace Sciences, 2019, 111(3): 100566.
[14]GRAUER S J, STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experiments in Fluids, 2020, 61(3): 80.
[15]GOLDHAHN E, SEUME J. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids, 2007, 43(2): 241-249.
[16]LIU H C, HUANG J Q, LI L, et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented schlieren tomography[J]. Science China Technological Sciences, 2021, 64(1): 98-110.
[17]SETTLES G S. On background-oriented schlieren(BOS)velocimetry[C]//18th International Symposium on Flow Visualization. Zurich:ETH Zurich, 2018.
[18]BEERMANN R, QUENTIN L, PÖSCH A, et al. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object[J]. Applied Optics, 2017, 56(14): 4168-4179.
[19]NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren(BOS)measurements[J]. Experiments in Fluids, 2015, 57(1): 13.
[20]HU W, ZHANG Y, LIANG X Y, et al. Background-oriented schlieren measurements for asymmetrical laminar flames along arbitrary rays from a single view[J]. Experiments in Fluids, 2023, 64(8): 145.
[21]GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame, 2018, 196: 284-299.
[22]UKAI T. The principle and characteristics of an image fibre background oriented schlieren(fibre BOS)technique for time-resolved three-dimensional unsteady density measurements[J]. Experiments in Fluids, 2021, 62(8): 170.
[23]BAUKNECHT A, EWERS B, WOLF C, et al. Three-dimensional reconstruction of helicopter blade-tip vortices using a multi-camera BOS system[J]. Experiments in Fluids, 2014, 56(1): 1866.
[24]BATHEL B F, WEISBERGER J, JONES S B. Development of tomographic background-oriented schlieren capability at NASA langley research center[C]//AIAA Aviation 2019 Forum. Reston, Virginia: AIAA, 2019.
[25]SCHWARZ C, BRAUKMANN J N. Practical aspects of designing background-oriented schlieren(BOS)experiments for vortex measurements[J]. Experiments in Fluids, 2023, 64(4): 67.
[26]VINNICHENKO N A, PUSHTAEV A V, PLAKSINA Y Y, et al. Performance of background oriented schlieren with different background patterns and image processing techniques[J]. Experimental Thermal and Fluid Science, 2023, 147: 110934.
[27]IHRKE I. Reconstruction and rendering of time-varying natural phenomena[Z]. 2007.
[28]WERNET M P. Real-time background oriented schlieren with self-illuminated speckle background[J]. Measurement Science and Technology, 2020, 31(1): 017001.
[29]RAFFEL M. Background-oriented schlieren(BOS)techniques[J]. Experiments in Fluids, 2015, 56(3): 60.
[30]SETTLES G S, HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology, 2017, 28(4): 042001.
[31]MEIER A H, ROESGEN T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids, 2013, 54(6): 1549.
[32]AMJAD S, SORIA J, ATKINSON C. Three-dimensional density measurements of a heated jet using laser-speckle tomographic background-oriented schlieren[J]. Experimental Thermal and Fluid Science, 2023, 142(4): 110819.
[33]OTA M, LEOPOLD F, NODA R, et al. Improvement in spatial resolution of background-oriented schlieren technique by introducing a telecentric optical system and its application to supersonic flow[J]. Experiments in Fluids, 2015, 56(3): 48.
[34]HIROSE Y, YAMAGISHI M, UDAGAWA S, et al. Double-pass imaging background-oriented schlieren technique for focusing on measurement target[J]. Experiments in Fluids, 2023, 64(9): 151.
[35]DING H L, YI S H, ZHAO X H. Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren[J]. Applied Optics, 2019, 58(11): 2948-2962.
[36]易仕和, 丁浩林. 适用高超声速飞行环境的超声速气膜冷却光学窗口研究进展[J]. 空天防御, 2021, 4(4): 1-13.
YI S H, DING H L. Research progress of optical aperture with supersonic film cooling under hypersonic flight environment[J]. Air & Space Defense, 2021, 4(4): 1-13.
[37]LIU H C, SHUI C Y, CAI W W. Time-resolved three-dimensional imaging of flame refractive index via endoscopic background-oriented Schlieren tomography using one single camera[J]. Aerospace Science and Technology, 2020, 97: 105621.
[38]WU J, PAN Z X, ZHANG C P, et al. A non-axisymmetric temperature field reconstruction method based on the interferometric fringe schlieren method[J]. Measurement Science and Technology, 2023, 34(4): 044005.
[39]SCHMIDT B E, WOIKE M R. Wavelet-based optical flow analysis for background-oriented schlieren image processing[Z]. 2021.
[40]SUN C L, HSIAO T H. On the background design for microscale background-oriented schlieren measurements of microfluidic mixing[J]. Microfluidics and Nanofluidics, 2014, 17(2): 375-391.
[41]MOUMEN A, GROSSEN J, NDINDABAHIZI I, et al. Visualization and analysis of muzzle flow fields using the background-oriented schlieren technique[J]. Journal of Visualization, 2020, 23(3): 409-423.
[42]SOURGEN F, LEOPOLD F, KLATT D. Reconstruction of the density field using the colored background oriented schlieren technique(CBOS)[J]. Optics and Lasers in Engineering, 2012, 50(1): 29-38.
[43]MIER F A, HARGATHER M J. Color gradient background-oriented schlieren imaging[J]. Experiments in Fluids, 2016, 57(6): 95.
[44]GARDNER A D, RAFFEL M, SCHWARZ C, et al. Reference-free digital shadowgraphy using a moving BOS background[J]. Experiments in Fluids, 2020, 61(2): 44.
[45]REICHENZER F, SCHNEIDER M, HERKOMMER A. Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds[J]. Experiments in Fluids, 2021, 62(9): 196.
[46]CAKIR B O, LAVAGNOLI S, SARACOGLU B H, et al. Assessment and application of optical flow in background-oriented schlieren for compressible flows[J]. Experiments in Fluids, 2022, 64(1): 11.
[47]ATCHESON B, HEIDRICH W, IHRKE I. An evaluation of optical flow algorithms for background oriented schlieren imaging[J]. Experiments in Fluids, 2009, 46(3): 467-476.
[48]RAJENDRAN L K, BANE S P M, VLACHOS P P. Dot tracking methodology for background-oriented schlieren(BOS)[J]. Experiments in Fluids, 2019, 60(11): 162.
[49]WILDEMAN S. Real-time quantitative schlieren imaging by fast Fourier demodulation of a checkered backdrop[J]. Experiments in Fluids, 2018, 59(6): 97.
[50]CAI H J, SONG Y, JI Y J, et al. Displacement extraction of background-oriented schlieren images using Swin transformer[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2023, 40(6): 1029-1041.
[51]OTA K, UKAI T, WAKAI T. Spatial resolution improvement by a super-resolution technique depending on training process in the background-orientated schlieren analyses[EB/OL]. https://www.semanticscholar.org/paper/Spatial-resolution-improvement-by-a-technique-on-in-Ota-Ukai/f44aa6161c2a41ff03f8048da1ad10861e2c36fe, 2023.
[52]MUCIGNAT C, MANICKATHAN L, SHAH J, et al. A lightweight convolutional neural network to reconstruct deformation in BOS recordings[J]. Experiments in Fluids, 2023, 64(4): 72.
[53]XIONG Y, WEILENMANN M, NOIRAY N. Analysis and reduction of spurious displacements in high-framing-rate background-oriented schlieren[J]. Experiments in Fluids, 2020, 61(2): 49.
[54]SIPKENS T A, GRAUER S J, STEINBERG A M, et al. New transform to project axisymmetric deflection fields along arbitrary rays[J]. Measurement Science and Technology, 2022, 33(3): 035201.
[55]LANG H M, OBERLEITHNER K, PASCHEREIT C O, et al. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography[J]. Experiments in Fluids, 2017, 58(7): 88.
[56]ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[57]THIELICKE W, SONNTAG R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab[J]. Journal of Open Research Software, 2021, 9(1): 12.
[58]BRADSKI G. The openCV library[J]. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 2000, 25(11): 120-123.
[59]CAI H J, SONG Y, JI Y J, et al. Direct background-oriented schlieren tomography using radial basis functions[J]. Optics Express, 2022, 30(11): 19100-19120.
[60]ATCHESON B, IHRKE I, BRADLEY D, et al. Imaging and 3D tomographic reconstruction of time-varying, inhomogeneous refractive index fields[C]//SIGGRAPH'07: ACM SIGGRAPH 2007 Sketches. San Diego, California:ACM, 2007:32.
[61] STOFFELS M, SIMON S, NIKOLIC P G, et al. Development of a multiperspective optical measuring system for investigating decaying switching arcs at the nozzle exit of circuit breakers[J]. Applied Optics, 2017, 56(7): 2007-2019.
[62]LEE J Y, KIM N, MIN K. Measurement of spray characteristics using the background-oriented schlieren technique[J]. Measurement Science and Technology, 2013, 24(2): 25303.
[63]MOLNAR J P, GRAUER S J, LÉON O, et al. Physics-informed background-oriented schlieren of turbulent underexpanded jets[C]//AIAA SCITECH 2023 Forum. Reston, Virginia: AIAA, 2023:2441.
[64]刘何聪. 基于三维层析成像技术的火焰结构和温度场测量方法研究[D]. 上海: 上海交通大学, 2019.
LIU H C. Research on measurement of flame structure and temperature distribution based on volumetric imaging[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[65]DAVIS J K, CLIFFORD C J, KELLY D L, et al. Tomographic background oriented schlieren using plenoptic cameras[J]. Measurement Science and Technology, 2022, 33(2): 025203.
[66]WAHLS B H, EKKAD S V. Temperature reconstruction of an axisymmetric enclosed reactive flow using simultaneous background oriented schlieren and infrared thermography[J]. Measurement Science and Technology, 2022, 33(11): 115201.
[67]朱海军, 王倩, 梅笑寒, 等. 基于高速纹影/阴影成像的流场测速技术研究进展[J]. 实验流体力学, 2022, 36(2): 49-73.
ZHU H J, WANG Q, MEI X H, et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49-73.
[68]CAI S Z, WANG Z C, FUEST F, et al. Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks[J]. Journal of Fluid Mechanics, 2021, 915: 102.
[69]MOLNAR J P, VENKATAKRISHNAN L, SCHMIDT B E, et al. Estimating density, velocity, and pressure fields in supersonic flows using physics-informed BOS[J]. Experiments in Fluids, 2023, 64(1): 14.
[70]OTA M, HAMADA K, KATO H, et al. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren(CGBOS)technique[J]. Measurement Science and Technology, 2011, 22(10): 104011.
[71]LEE C, OZAWA Y, HAGA T, et al. Comparison of three-dimensional density distribution of numerical and experimental analysis for twin jets[J]. Journal of Visualization, 2021, 24(6): 1173-1188.
[72]ATCHESON B, IHRKE I, HEIDRICH W, et al. Time-resolved 3D capture of non-stationary gas flows[J]. ACM Transactions on Graphics, 2008, 27(5): 132.
[73]宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1-11.
SONG E Z, LEI Q C, FAN W. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11.
[74]MARTINS F J W A, FOO C T, UNTERBERGER A, et al. Analyzing 3D fields of refractive index, emission and temperature in spray-flame nanoparticle synthesis via tomographic imaging using multi-simultaneous measurements(TIMes)[J]. Applications in Energy and Combustion Science, 2023, 16: 100213.
[75]MARTINS F J W A, UNTERBERGER A, MOHRI K. Tomographic imaging using multi-simultaneous measurements(TIMes)of emission and refractive index 3D fields in turbulent flames[J]. Proceedings of the Combustion Institute, 2023, 39(1): 1405-1413.
[76]UNTERBERGER A, MARTINS F J W A, MOHRI K. Coupled 3D evolutionary reconstruction technique for multi-simultaneous measurements[J]. Fuel, 2023, 346: 128336.
[77]JUNG H. Basic physical principles and clinical applications of computed tomography[J]. Progress in Medical Physics, 2021, 32(1): 1-17.
[78]张瀚铭. CT不完全数据重建算法研究[D]. 郑州: 解放军信息工程大学, 2017.
ZHANG H M. Computed tomography image reconstruction with incomplete projection data[D]. Zhengzhou: PLA Information Engineering University, 2017.
[79]LEE C, OZAWA Y, NAGATA T, et al. Super-resolution of time-resolved three-dimensional density fields of the B mode in an underexpanded screeching jet[EB/OL]. https://pubs.aip.org/aip/pof/article-abstract/35/6/ 065128/2896440/Super-resolution-of-time-resolved-three?redirectedFrom=fulltext, 2023.
[80]CORREIA T, GIBSON A, SCHWEIGER M, et al. Selection of regularization parameter for optical topography[J]. Journal of Biomedical Optics, 2009, 14(3): 034044.
[81]GOLUB G H, HEATH M, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215.
[82]WEI C Y, SCHWARM K K, PINEDA D I, et al. Volumetric laser absorption imaging of temperature, CO and CO2 in laminar flames using 3D masked Tikhonov regularization[J]. Combustion and Flame, 2021, 224: 239-247.
[83]LIU H C, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107-7115.
[84]JIN Y, GUO Z Y, SONG Y, et al. Sparse regularization-based reconstruction for 3D flame chemiluminescence tomography[J]. Applied Optics, 2021, 60(3): 513-525.
[85]LANZILLOTTA L, LÉON O, DONJAT D, et al. 3D density reconstruction of a screeching supersonic jet by synchronized multi-camera background oriented schlieren[C]//EUCASS 2019.[S.l.]:[s.n.],2019.
[86]LI Z H, CHEN X Y, ZHANG B, et al. 3D flow visualization via background oriented schlieren tomogra-phy[C]//2022 International Conference on Computing, Communication, Perception and Quantum Technology(CCPQT). Xiamen, China:IEEE, 2022:76-81.
[87]TODOROFF V, PLYER A, BESNERAIS G L, et al. 3D reconstruction of the density field of a jet using synthetic bos images[EB/OL]. https://www.semanticscholar.org/paper/3D-RECONSTRUCTION-OF-THE-DENSITY-FIELD-OF-A-JET-BOS-Todoroff-Plyer/945ee521acd19ec-76c8c8698d596512081338b5d, 2012.
[88]ZHANG B, WU Z H, ZHAO M M. Deflection tomographic reconstructions of a three-dimensional flame structure and temperature distribution of premixed combustion[J]. Applied Optics, 2015, 54(6): 1341-1349.
[89]AMJAD S, KARAMI S, SORIA J, et al. Assessment of three-dimensional density measurements from tomographic background-oriented schlieren(BOS)[J]. Measurement Science and Technology, 2020, 31(11): 114002.
[90]倪浩伟, 刘国炎, 周毅, 等. 基于多紫外相机的旋流火焰三维锋面层析重建[J]. 航空学报, 2023, 44(18):143-156.
NI H W, LIU G Y, ZHOU Y, et al. 3D front tomographic reconstruction of swirl flame by ultraviolet multi-camera imaging[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 143-156.
[91]杨富强, 张定华, 黄魁东, 等. CT不完全投影数据重建算法综述[J]. 物理学报, 2014, 63(5): 9-20. YANG F Q, ZHANG D H, HUANG K D, et al. Review of reconstruction algorithms with incomplete projection data of computed tomography[J]. Acta Physica Sinica, 2014, 63(5): 9-20.
[92]ZHANG B, ZHAO M M, LIU Z G, et al. Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction[J]. Optics and Lasers in Engineering, 2016, 83(1): 23-31.
[93]BÜHLMANN P. Laser speckle background oriented schlieren imaging for near-wall measurements[D]. Zurich:ETH Zurich, 2020.
[94]LEOPOLD F, OTA M, KLATT D, et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization, 2013, 1(2): 69-76.
[95]GOMEZ M, GRAUER S J, LUDWIGSEN J, et al. Megahertz-rate background-oriented schlieren tomography in post-detonation blasts[J]. Applied Optics, 2022, 61(10): 2444.
[96]HANSEN P C, SAXILD-HANSEN M. AIR Tools:A MATLAB package of algebraic iterative reconstruction methods[J]. Journal of Computational and Applied Mathematics, 2012, 236(8): 2167-2178.
[97]VAN HINSBERG N P, RÖSGEN T. Density measurements using near-field background-oriented schlieren[J]. Experiments in Fluids, 2014, 55(4): 1720.
[98]TOKGOZ S, GEISLER R, VAN BOKHOVEN L A, et al. Temperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methods[J]. Measurement Science and Technology, 2012, 23(11): 115302.
[99]ELSINGA G E, VAN OUDHEUSDEN B W, SCARANO F, et al. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren[J]. Experiments in Fluids, 2004, 36(2): 309-325.
[100]JI H, LI Y H. Block conjugate gradient algorithms for least squares problems[J]. Journal of Computational and Applied Mathematics, 2017, 317: 203-217.
[101]JONES G A, HUTHWAITE P. Limited view X-ray tomography for dimensional measurements[J]. NDT & E International, 2018, 93: 98-109.
[102]邸江磊, 林俊成, 钟丽云, 等. 基于深度学习的稀疏或有限角度CT重建方法研究综述[J]. 激光与光电子学进展, 2023, 60(8): 42-79.
DI J L, LIN J C, ZHONG L Y, et al. Review of sparse-view or limited-angle CT reconstruction based on deep learning[J]. Laser & Optoelectronics Progress, 2023, 60(8): 42-79.
[103]ROHLFS L, WEISS J. Assimilating velocity fields from bos measurements in supersonic flows using physics informed neural networks[C]//AIAA Aviation 2023 Forum. Reston, Virginia:AIAA,2023:4363.
[104]HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875: 2.
[105]HUANG J Q, LIU H C, WANG Q, et al. Limited-projection volumetric tomography for time-resolved turbulent combustion diagnostics via deep learning[J]. Aerospace Science and Technology, 2020, 106: 106123.
[106]JIN Y, ZHANG W Q, SONG Y, et al. Three-dimensional rapid flame chemiluminescence tomography via deep learning[J]. Optics Express, 2019, 27(19): 27308-27334.
[107]RONG S H, SONG Y, WU C X, et al. A camera array based reconstruction method for limited observation windows projection in three-dimensional flame chemiluminescence tomography[J]. Engineering Research Express, 2022, 4(3): 035003.
[108]荣韶华. 有限窗口燃烧场的非完全数据发射层析重建方法研究[D]. 南京: 南京理工大学, 2021.
RONG S H.Study on incomplete data emission tomography reconstruction method of limited window combustion field[D]. Nanjing: Nanjing University of Science and Technology, 2021.
[109]BO L, CAI H J, SONG Y, et al. Background-oriented schlieren tomography using gated recurrent unit[J]. Optics Express, 2023, 31(23): 39182-39200.
[110]GRAUER S J. Flow field tomography with uncertainty quantification using a Bayesian physics-informed neural network[J]. Measurement Science and Technology, 2022, 33(6): 065305.
[111]KLEMKOWSKY J N, FAHRINGER T W, CLIFFORD C J, et al. Plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology, 2017, 28(9): 095404.
[112]TAN Z P, JOHNSON K, CLIFFORD C, et al. Development of a modular, high-speed plenoptic-camera for 3D flow-measurement[J]. Optics Express, 2019, 27(9): 13400-13415.
[113]GUILDENBECHER D R, KUNZLER M, SWEATT W, et al. High-magnification, long-working distance plenoptic background oriented schlieren(BOS)[C]//AIAA Scitech 2020 Forum. Reston, Virginia: AIAA, 2020:2206.
[114]KLEMKOWSKY J N, CLIFFORD C J, BATHEL B F, et al. A direct comparison between conventional and plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology, 2019, 30(6): 064001.
[115]WANG Q, YU T, LIU H, et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B-Optical Physics, 2020, 37(4): 1231-1239.
[116]SANNED D, LINDSTRÖM J, ROTH A, et al. Arbitrary position 3D tomography for practical application in combustion diagnostics[J]. Measurement Science and Technology, 2022, 33(12): 125206.
[117]WANG J, LI M, GUO Z, et al. Camera spatial arrangement influence on reconstruction accuracy of chemiluminescence tomography[J]. Applied Optics, 2023, 62(19): 5179-5188.
[118]GAO Y, LING C, WU Y, et al. A sensor arrangement optimization method for volumetric tomography: Effective voxel correction maximization(EVCM)[J]. Applied Physics B, 2022, 128(9): 173.
备注/Memo
收稿日期:2023- 12- 26修回日期:2024- 01- 29
基金项目:国家自然科学基金(11927802); 中国博士后科学基金(2023M730168)
作者简介:胡 炜(1994—),女,博士,副研究员,研究领域为背景纹影技术及其在燃烧测量的应用。
通信作者:李敬轩(1984—),男,教授,研究领域为不稳定燃烧的预测、测量和控制。