PDF下载 分享
[1]韩明,李大海.液体动力试验数字化转型技术进展与展望[J].火箭推进,2024,50(06):27-39.[doi:10.3969/j.issn.1672-9374.2024.06.002]
 HAN Ming,LI Dahai.Development and prospect of digital transformation technology for liquid-propellant engine test[J].Journal of Rocket Propulsion,2024,50(06):27-39.[doi:10.3969/j.issn.1672-9374.2024.06.002]
点击复制

液体动力试验数字化转型技术进展与展望

参考文献/References:

[1] 柏林厚, 王为, 周昊澄, 等. 中国空间站运营中的数字化应用[J]. 中国航天, 2023(1): 9-16.
BAI L H, WANG W, ZHOU H C, et al. Digital applications in China's space station operation[J]. Aerospace China, 2023(1): 9-16.
[2]石小林, 王为. 数字空间站建设及其应用[J]. 航天器工程, 2022, 31(6): 76-85.
SHI X L, WANG W. Digital space station and its application[J]. Spacecraft Engineering, 2022, 31(6): 76-85.
[3]张柏楠, 戚发轫, 邢涛, 等. 基于模型的载人航天器研制方法研究与实践[J]. 航空学报, 2020,41(7): 023967.
ZHANG B N, QI F R, XING T, et al. Model based development method of manned spacecraft: Research and practice[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 023967.
[4]王建军, 向永清, 何正文. 基于数字孪生的航天器系统工程模型与实现[J]. 计算机集成制造系统, 2019,25(6): 1348-1360.
WANG J J, XIANG Y Q, HE Z W. Models and implementation of digital twin based spacecraft system engineering[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1348-1360.
[5]何巍, 胡久辉, 赵婷, 等. 基于模型的运载火箭总体设计方法初探[J]. 导弹与航天运载技术, 2021(1): 12-17.
HE W,HU J H, ZHAO T, et al. Research on model based launch vehicle overall design[J]. Missiles and Space Vehicles, 2021(1): 12-17.
[6]李斌, 陈晖, 马冬英, 等.500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10.
LI B, CHEN H, MA D Y, et al. Development of 500 tf class high pressure stage combustion LOX/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10.
[7]MATT C, HESS T, BENLIAN A. Digital transformation strategies[J]. Business & Information Systems Engineering, 2015, 57(5): 339-343.
[8]华为企业架构与变革管理部. 华为数字化转型之道[M]. 北京: 机械工业出版社, 2022.
Huawei Enterprise Architecture and Change Management Department. Huawei's path to digital transformation[M].Beijing: China Machine Press, 2022.
[9]MICHAEL D G, KRISTEN B, JEFF S, et al. Department of defense digital engineering strategy[R]. Washington D C: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2018.
[10]崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4): 84-86.
CUI Y L, WANG W W, WANG L. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4): 84-86.
[11]JEAN-LOUP T. Digital transformation in the European space industry[R]. Noordwijk: European Space Agency, 2022.
[12]National Aeronautics and Space Administration. NASA fiscal year 2024 budget summary[EB/OL]. https:// www.nasa.gov/sites/default/files/atoms/files/fiscal_year_ 2024_nasa_budget_summary.pdf,2023.
[13]National Aeronautics and Space Administration. President's fiscal year 2024 budget strengthens NASA, space economy [EB/OL]. http://www.nasa.gov/press-release/president-s-fiscal-year-2024-budget-strengthens-nasa-spaceeconomy,2023.
[14]曹建国. 数字化转型下航空发动机仿真技术发展机遇及应用展望[J]. 系统仿真学报, 2023,35(1): 1-10.
CAO J G. Development opportunities and application prospects of aero-engine simulation technology under digital transformation[J]. Journal of System Simulation, 2023, 35(1): 1-10.
[15]JOHN S. Digital transformation at NASA[J]. NASA OCIO IT Talk, 2019(9): 6.
[16]JANET Z. Digital transformation at JPL[J]. NASA OCIO IT Talk, 2019(9): 7.
[17] 方志刚. 复杂装备系统数字孪生: 赋能基于模型的正向研发和协同创新[M]. 北京: 机械工业出版社, 2021.
FANG Z G. Complex equipment system digital twin:Model based positive research and collaborative innovation[M].Beijing:China Machine Press, 2021.
[18]赵民, 贾长伟, 张冶. 航天装备数字化建设研究与实践[J]. 宇航总体技术, 2023,7(2): 27-34.
ZHAO M, JIA C W, ZHANG Y. Research and practice of space equipment digital construction[J]. Astronautical Systems Engineering Technology, 2023, 7(2): 27-34.
[19]郝建春. 数字孪生支撑航空航天工业数字化转型(上): AIAA和AIA《数字孪生: 定义与价值》报告[J]. 航空标准化与质量, 2021(5): 57-59.
HAO J C.Digital twinning supports the digital transformation of aerospace industry(I)—AIAA and AIA's digital twinning: Definition and value report[J]. Aeronautic Standardization and Quality, 2021(5): 57-59.
[20]LEE J, BAGHERI B, KAO H G. A cyber-physical systems architecture for industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3(1): 18-23.
[21]杨挺, 刘亚闯, 刘宇哲, 等. 信息物理系统技术现状分析与趋势综述[J]. 电子与信息学报, 2021, 43(12): 3393-3406.
YANG T, LIU Y C, LIU Y Z, et al. Review on cyber-physical system: Technology analysis and trends[J]. Journal of Electronics and Information Technology, 2021, 43(12): 3393-3406.
[22]RAJKUMAR R, LEE I, SHA L, et al. Cyber-physical systems: The next computing revolution[C]//Design Automation Conference.New York:IEEE, 2010:731-736.
[23]杨孟飞, 王磊, 顾斌, 等. CPS在航天器控制系统中的应用分析[J]. 空间控制技术与应用, 2012, 38(5): 8-13.
YANG M F, WANG L, GU B, et al. The application of CPS to spacecraft control systems[J]. Aerospace Control and Application, 2012, 38(5): 8-13.
[24]陈彦林, 许艺峰. 液体动力研制体系数字化转型的探索与思考[J]. 火箭推进, 2020, 46(4): 14-22.
CHEN Y L, XU Y F. Exploration and consideration on digital transformation of liquid-propellant engine development system[J]. Journal of Rocket Propulsion, 2020, 46(4): 14-22.
[25]聂蓉梅, 周潇雅, 肖进, 等. 数字孪生技术综述分析与发展展望[J]. 宇航总体技术, 2022,6(1): 1-6.
NIE R M, ZHOU X Y, XIAO J, et al. Analysis and perspective on digital twin technology[J]. Astronautical Systems Engineering Technology, 2022, 6(1): 1-6.
[26]刘瑜, 谢强. 数字孪生的技术特点及在飞行试验中的应用展望[J]. 系统仿真学报, 2021,33(6): 1364-1373.
LIU Y, XIE Q. Technical characteristics of digital twins and application prospects in the field of flight testing[J]. Journal of System Simulation, 2021, 33(6): 1364-1373.
[27] 张志博, 江建玲, 贾博博. 数字孪生在压气机试验中的应用探索[J]. 航空动力, 2022(4): 63-66.
ZHANG Z B, JIANG J L, JIA B B. Digital twin in the compressor test[J]. Aerospace Power, 2022(4): 63-66.
[28]刘杰, 陈世伟, 韩博志, 等. 数字孪生体技术在船舶轴系试验台架中的应用研究[J]. 中国修船, 2021,34(5): 12-15.
LIU J, CHEN S W, HAN B Z, et al. Research on application of digital twin technology in ship shafting test bench[J]. China Shiprepair, 2021, 34(5): 12-15.
[29]张宁, 郭君, 尹韶平, 等. 数字孪生技术发展现状及其在水下无人系统中的应用展望[J]. 水下无人系统学报, 2022, 30(2): 137-146.
ZHANG N, GUO J, YIN S P, et al. Development of digital twin technology and its application prospect in unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 137-146.
[30]闫志璞, 马健. 数字化试验室建设在汽车研发中心的应用[J]. 数字技术与应用, 2021, 39(10): 184-186.
YAN Z P, MA J.Application of digital laboratory construction in automobile R & D center[J]. Digital Technology and Application, 2021, 39(10): 184-186.
[31]GAYDA J, KANTZOS P. High temperature burst testing of a superalloy disks with a dual grain structure: NASA/TM-2004-212884[R]. Washington D C: NASA, 2004.
[32]王振, 谭永华, 黄道琼, 等. 液体火箭发动机离心轮极限转速分析与试验[J]. 火箭推进, 2017, 43(5): 45-51.
WANG Z, TAN Y H, HUANG D Q, et al. Analysis and test for limit speed of centrifugal impeller in liquid rocket engine[J]. Journal of Rocket Propulsion, 2017, 43(5): 45-51.
[33]张霖, 王昆玉, 赖李媛君, 等. 基于建模仿真的体系工程[J]. 系统仿真学报, 2022,34(2): 179-190.
ZHANG L, WANG K Y, LAI L Y J, et al. Modeling and simulation based system of systems engineering[J]. Journal of System Simulation, 2022, 34(2): 179-190.
[34]张鹏翼, 黄百乔, 鞠鸿彬. MBSE: 系统工程的发展方向[J]. 科技导报, 2020, 38(21):21-26.
ZHANG P Y, HUANG B Q, JU H B. MBSE: Future direction of system engineering[J]. Science & Technology Review, 2020, 38(21): 21-26.
[35]HENDERSON K, SALADO A. Value and benefits of model-based systems engineering(MBSE): Evidence from the literature[J]. Systems Engineering, 2020, 24: 51-66.
[36]INCOSE. INCOSE SE Vision 2020[Z]. 2007.
[37]NDIA Systems Engineering Division M & S Committee. Final report of the MBS subcommittee[Z]. 2011.
[38]黄仕启, 李锦江, 孙慧娟. 某型膨胀循环发动机高空模拟试验方案研究[J]. 火箭推进, 2017,43(5): 39-44.
HUANG S Q, LI J J, SUN H J. Research on altitude simulation test scheme for expand cycle engine[J]. Journal of Rocket Propulsion, 2017, 43(5): 39-44.
[39]张魏静, 刘占一, 刘计武, 等. 液体火箭发动机组件热真空虚拟试验技术[J]. 火箭推进, 2021,47(4): 64-70.
ZHANG W J, LIU Z Y, LIU J W, et al. Virtual thermal vacuum test technology of liquid-propellant rocket engine components[J]. Journal of Rocket Propulsion, 2021, 47(4): 64-70.
[40]黄本诚, 马有礼. 航天器空间环境试验技术[M]. 北京: 国防工业出版社, 2002.
HUANG B C,MA Y L. Space environment test technology of spacecraft[M].Beijing: National Defence Industry Press, 2002.
[41]仵宗华, 孙宝元, 张军, 等. 小推力火箭发动机推力测试系统温度影响研究[J]. 传感器与微系统, 2009,28(1): 7-9.
WU Z H, SUN B Y, ZHANG J, et al. Effect of temperature on small thrust motormeasuring system[J]. Transducer and Microsystem Technologies, 2009,28(1): 7-9.
[42]刘万龙, 朱昊伟, 孙树江, 等. 国内微推力测试技术发展现状[J]. 火箭推进, 2015, 41(5): 7-11.
LIU W L, ZHU H W, SUN S J, et al. Development status of micro-thrust testing technology in China[J]. Journal of Rocket Propulsion, 2015, 41(5): 7-11.
[43]寇鑫, 李广会, 王宏亮, 等. 姿控发动机小推力测量天平设计[J]. 火箭推进,2018, 44(2): 23-27.
KOU X, LI G H, WANG H L, et al. Design of single-component balance for small thrust measurement of attitude control engine[J].Journal of Rocket Propulsion, 2018, 44(2): 23-27.
[44]孙金立. 无损检测及在航空维修中的应用[M]. 北京: 国防工业出版社, 2004.
SUN J L.Non destructive testing and its application in aviation maintenance[M].Beijing: National Defence Industry Press, 2004.
[45]党长久, 李明轩. 超声在固体火箭发动机无损检测中的应用[J]. 应用声学,1995, 14(5): 32-38.
DANG C J, LI M X. Applications of ultrasonic techniques to the NDT of solid-propellant rocket motors[J]. Applied Acoustics, 1995, 14(5): 32-38.
[46]史亚男. 喷管羽流对捆绑式运载火箭底部热环境的影响研究[D]. 北京: 北京理工大学, 2016.
SHI Y N.Study on the influence of nozzle plume on the thermal environment at the bottom of bundled launch vehicle[D]. Beijing: Beijing Institute of Technology, 2016.
[47]尹本浩, 冷国俊, 刘芬芬. 涂层及材质对大功率天线热真空试验的影响[J]. 电子机械工程, 2019, 35(6): 12-16.
YIN B H, LENG G J, LIU F F. Effect of different coatings and materials on thermal vacuum test of high power antenna[J]. Electro-Mechanical Engineering, 2019, 35(6): 12-16.
[48]刘占一, 许婷, 张魏静, 等. 热防护材料表面发射率测试研究[J]. 火箭推进, 2019, 45(4): 79-84.
LIU Z Y, XU T, ZHANG W J, et al. Measurement study on surface emissivity of thermal protection material[J]. Journal of Rocket Propulsion, 2019, 45(4): 79-84.
[49]迈克尔·格里夫斯.智能制造之虚拟完美模型: 驱动创新与精益产品[M]. 方志刚, 张振宇,译.北京: 机械工业出版社, 2017.
GRIEVES M. Virtual perfect model of intelligent manufacturing:Drive innovation and lean products[M].FANG Z G,ZHANG Z Y,trans. Beijing: China Machine Press, 2017.
[50]GLAESSGEN E H, STARGEL D S. The digital twin paradigm for future NASA and U.S.air force vehicles[Z]. 2012.

相似文献/References:

[1]陈彦林,许艺峰.液体动力研制体系数字化转型的探索与思考[J].火箭推进,2020,46(04):14.
 CHEN Yanlin,XU Yifeng.Exploration and consideration on digital transformation of liquid-propellant engine development system[J].Journal of Rocket Propulsion,2020,46(06):14.

备注/Memo

收稿日期:2024- 04- 15修回日期:2024- 10- 29
基金项目:国防基础科研计划(JCKY2023203C014)
作者简介:韩 明(1976—),男,硕士,研究员,研究领域为液体动力试验技术。

更新日期/Last Update: 1900-01-01