航天推进技术研究院主办
HAN Ming,LI Dahai.Development and prospect of digital transformation technology for liquid-propellant engine test[J].Journal of Rocket Propulsion,2024,50(06):27-39.[doi:10.3969/j.issn.1672-9374.2024.06.002]
液体动力试验数字化转型技术进展与展望
- Title:
- Development and prospect of digital transformation technology for liquid-propellant engine test
- 文章编号:
- 1672-9374(2024)06-0027-13
- 分类号:
- V416
- 文献标志码:
- A
- 摘要:
- 液体动力试验数字化转型是构建液体动力数字化研制的重要一环,技术的研究和应用是现阶段的迫切问题。分析了国内外航空航天产业数字化转型技术发展的现状与趋势,在试验业务特点和关键技术进展的基础上,提出了液体动力试验数字化转型的目标、路线和后续技术发展重点,设计了数字化试验体系总体框架,以液氧煤油发动机交付试验为试点开展了数字化转型试点,为加快液体动力试验体系的数字化转型提供了技术发展参考。
- Abstract:
- The digital transformation of liquid-propellant engine test is an important part of building digital development of liquid propulsion, and the research and application of such technology are urgent issues at this stage. The current development status and trends of digital transformation in aerospace test technology at home and abroad were analyzed. Based on the characteristics of test business and the progress of key technologies, the goal, routes and subsequent development priorities for the digital transformation of liquid-propellant engine test were proposed, and the overall framework of the digital testing system was outlined. The digital transformation was carried out as a pilot project for the delivery test of liquid oxygen and kerosene engines, providing a technological development direction for accelerating the digital transformation of liquid propulsion test.
参考文献/References:
[1] 柏林厚, 王为, 周昊澄, 等. 中国空间站运营中的数字化应用[J]. 中国航天, 2023(1): 9-16.
BAI L H, WANG W, ZHOU H C, et al. Digital applications in China's space station operation[J]. Aerospace China, 2023(1): 9-16.
[2]石小林, 王为. 数字空间站建设及其应用[J]. 航天器工程, 2022, 31(6): 76-85.
SHI X L, WANG W. Digital space station and its application[J]. Spacecraft Engineering, 2022, 31(6): 76-85.
[3]张柏楠, 戚发轫, 邢涛, 等. 基于模型的载人航天器研制方法研究与实践[J]. 航空学报, 2020,41(7): 023967.
ZHANG B N, QI F R, XING T, et al. Model based development method of manned spacecraft: Research and practice[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 023967.
[4]王建军, 向永清, 何正文. 基于数字孪生的航天器系统工程模型与实现[J]. 计算机集成制造系统, 2019,25(6): 1348-1360.
WANG J J, XIANG Y Q, HE Z W. Models and implementation of digital twin based spacecraft system engineering[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1348-1360.
[5]何巍, 胡久辉, 赵婷, 等. 基于模型的运载火箭总体设计方法初探[J]. 导弹与航天运载技术, 2021(1): 12-17.
HE W,HU J H, ZHAO T, et al. Research on model based launch vehicle overall design[J]. Missiles and Space Vehicles, 2021(1): 12-17.
[6]李斌, 陈晖, 马冬英, 等.500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10.
LI B, CHEN H, MA D Y, et al. Development of 500 tf class high pressure stage combustion LOX/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10.
[7]MATT C, HESS T, BENLIAN A. Digital transformation strategies[J]. Business & Information Systems Engineering, 2015, 57(5): 339-343.
[8]华为企业架构与变革管理部. 华为数字化转型之道[M]. 北京: 机械工业出版社, 2022.
Huawei Enterprise Architecture and Change Management Department. Huawei's path to digital transformation[M].Beijing: China Machine Press, 2022.
[9]MICHAEL D G, KRISTEN B, JEFF S, et al. Department of defense digital engineering strategy[R]. Washington D C: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2018.
[10]崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4): 84-86.
CUI Y L, WANG W W, WANG L. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4): 84-86.
[11]JEAN-LOUP T. Digital transformation in the European space industry[R]. Noordwijk: European Space Agency, 2022.
[12]National Aeronautics and Space Administration. NASA fiscal year 2024 budget summary[EB/OL]. https:// www.nasa.gov/sites/default/files/atoms/files/fiscal_year_ 2024_nasa_budget_summary.pdf,2023.
[13]National Aeronautics and Space Administration. President's fiscal year 2024 budget strengthens NASA, space economy [EB/OL]. http://www.nasa.gov/press-release/president-s-fiscal-year-2024-budget-strengthens-nasa-spaceeconomy,2023.
[14]曹建国. 数字化转型下航空发动机仿真技术发展机遇及应用展望[J]. 系统仿真学报, 2023,35(1): 1-10.
CAO J G. Development opportunities and application prospects of aero-engine simulation technology under digital transformation[J]. Journal of System Simulation, 2023, 35(1): 1-10.
[15]JOHN S. Digital transformation at NASA[J]. NASA OCIO IT Talk, 2019(9): 6.
[16]JANET Z. Digital transformation at JPL[J]. NASA OCIO IT Talk, 2019(9): 7.
[17] 方志刚. 复杂装备系统数字孪生: 赋能基于模型的正向研发和协同创新[M]. 北京: 机械工业出版社, 2021.
FANG Z G. Complex equipment system digital twin:Model based positive research and collaborative innovation[M].Beijing:China Machine Press, 2021.
[18]赵民, 贾长伟, 张冶. 航天装备数字化建设研究与实践[J]. 宇航总体技术, 2023,7(2): 27-34.
ZHAO M, JIA C W, ZHANG Y. Research and practice of space equipment digital construction[J]. Astronautical Systems Engineering Technology, 2023, 7(2): 27-34.
[19]郝建春. 数字孪生支撑航空航天工业数字化转型(上): AIAA和AIA《数字孪生: 定义与价值》报告[J]. 航空标准化与质量, 2021(5): 57-59.
HAO J C.Digital twinning supports the digital transformation of aerospace industry(I)—AIAA and AIA's digital twinning: Definition and value report[J]. Aeronautic Standardization and Quality, 2021(5): 57-59.
[20]LEE J, BAGHERI B, KAO H G. A cyber-physical systems architecture for industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3(1): 18-23.
[21]杨挺, 刘亚闯, 刘宇哲, 等. 信息物理系统技术现状分析与趋势综述[J]. 电子与信息学报, 2021, 43(12): 3393-3406.
YANG T, LIU Y C, LIU Y Z, et al. Review on cyber-physical system: Technology analysis and trends[J]. Journal of Electronics and Information Technology, 2021, 43(12): 3393-3406.
[22]RAJKUMAR R, LEE I, SHA L, et al. Cyber-physical systems: The next computing revolution[C]//Design Automation Conference.New York:IEEE, 2010:731-736.
[23]杨孟飞, 王磊, 顾斌, 等. CPS在航天器控制系统中的应用分析[J]. 空间控制技术与应用, 2012, 38(5): 8-13.
YANG M F, WANG L, GU B, et al. The application of CPS to spacecraft control systems[J]. Aerospace Control and Application, 2012, 38(5): 8-13.
[24]陈彦林, 许艺峰. 液体动力研制体系数字化转型的探索与思考[J]. 火箭推进, 2020, 46(4): 14-22.
CHEN Y L, XU Y F. Exploration and consideration on digital transformation of liquid-propellant engine development system[J]. Journal of Rocket Propulsion, 2020, 46(4): 14-22.
[25]聂蓉梅, 周潇雅, 肖进, 等. 数字孪生技术综述分析与发展展望[J]. 宇航总体技术, 2022,6(1): 1-6.
NIE R M, ZHOU X Y, XIAO J, et al. Analysis and perspective on digital twin technology[J]. Astronautical Systems Engineering Technology, 2022, 6(1): 1-6.
[26]刘瑜, 谢强. 数字孪生的技术特点及在飞行试验中的应用展望[J]. 系统仿真学报, 2021,33(6): 1364-1373.
LIU Y, XIE Q. Technical characteristics of digital twins and application prospects in the field of flight testing[J]. Journal of System Simulation, 2021, 33(6): 1364-1373.
[27] 张志博, 江建玲, 贾博博. 数字孪生在压气机试验中的应用探索[J]. 航空动力, 2022(4): 63-66.
ZHANG Z B, JIANG J L, JIA B B. Digital twin in the compressor test[J]. Aerospace Power, 2022(4): 63-66.
[28]刘杰, 陈世伟, 韩博志, 等. 数字孪生体技术在船舶轴系试验台架中的应用研究[J]. 中国修船, 2021,34(5): 12-15.
LIU J, CHEN S W, HAN B Z, et al. Research on application of digital twin technology in ship shafting test bench[J]. China Shiprepair, 2021, 34(5): 12-15.
[29]张宁, 郭君, 尹韶平, 等. 数字孪生技术发展现状及其在水下无人系统中的应用展望[J]. 水下无人系统学报, 2022, 30(2): 137-146.
ZHANG N, GUO J, YIN S P, et al. Development of digital twin technology and its application prospect in unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 137-146.
[30]闫志璞, 马健. 数字化试验室建设在汽车研发中心的应用[J]. 数字技术与应用, 2021, 39(10): 184-186.
YAN Z P, MA J.Application of digital laboratory construction in automobile R & D center[J]. Digital Technology and Application, 2021, 39(10): 184-186.
[31]GAYDA J, KANTZOS P. High temperature burst testing of a superalloy disks with a dual grain structure: NASA/TM-2004-212884[R]. Washington D C: NASA, 2004.
[32]王振, 谭永华, 黄道琼, 等. 液体火箭发动机离心轮极限转速分析与试验[J]. 火箭推进, 2017, 43(5): 45-51.
WANG Z, TAN Y H, HUANG D Q, et al. Analysis and test for limit speed of centrifugal impeller in liquid rocket engine[J]. Journal of Rocket Propulsion, 2017, 43(5): 45-51.
[33]张霖, 王昆玉, 赖李媛君, 等. 基于建模仿真的体系工程[J]. 系统仿真学报, 2022,34(2): 179-190.
ZHANG L, WANG K Y, LAI L Y J, et al. Modeling and simulation based system of systems engineering[J]. Journal of System Simulation, 2022, 34(2): 179-190.
[34]张鹏翼, 黄百乔, 鞠鸿彬. MBSE: 系统工程的发展方向[J]. 科技导报, 2020, 38(21):21-26.
ZHANG P Y, HUANG B Q, JU H B. MBSE: Future direction of system engineering[J]. Science & Technology Review, 2020, 38(21): 21-26.
[35]HENDERSON K, SALADO A. Value and benefits of model-based systems engineering(MBSE): Evidence from the literature[J]. Systems Engineering, 2020, 24: 51-66.
[36]INCOSE. INCOSE SE Vision 2020[Z]. 2007.
[37]NDIA Systems Engineering Division M & S Committee. Final report of the MBS subcommittee[Z]. 2011.
[38]黄仕启, 李锦江, 孙慧娟. 某型膨胀循环发动机高空模拟试验方案研究[J]. 火箭推进, 2017,43(5): 39-44.
HUANG S Q, LI J J, SUN H J. Research on altitude simulation test scheme for expand cycle engine[J]. Journal of Rocket Propulsion, 2017, 43(5): 39-44.
[39]张魏静, 刘占一, 刘计武, 等. 液体火箭发动机组件热真空虚拟试验技术[J]. 火箭推进, 2021,47(4): 64-70.
ZHANG W J, LIU Z Y, LIU J W, et al. Virtual thermal vacuum test technology of liquid-propellant rocket engine components[J]. Journal of Rocket Propulsion, 2021, 47(4): 64-70.
[40]黄本诚, 马有礼. 航天器空间环境试验技术[M]. 北京: 国防工业出版社, 2002.
HUANG B C,MA Y L. Space environment test technology of spacecraft[M].Beijing: National Defence Industry Press, 2002.
[41]仵宗华, 孙宝元, 张军, 等. 小推力火箭发动机推力测试系统温度影响研究[J]. 传感器与微系统, 2009,28(1): 7-9.
WU Z H, SUN B Y, ZHANG J, et al. Effect of temperature on small thrust motormeasuring system[J]. Transducer and Microsystem Technologies, 2009,28(1): 7-9.
[42]刘万龙, 朱昊伟, 孙树江, 等. 国内微推力测试技术发展现状[J]. 火箭推进, 2015, 41(5): 7-11.
LIU W L, ZHU H W, SUN S J, et al. Development status of micro-thrust testing technology in China[J]. Journal of Rocket Propulsion, 2015, 41(5): 7-11.
[43]寇鑫, 李广会, 王宏亮, 等. 姿控发动机小推力测量天平设计[J]. 火箭推进,2018, 44(2): 23-27.
KOU X, LI G H, WANG H L, et al. Design of single-component balance for small thrust measurement of attitude control engine[J].Journal of Rocket Propulsion, 2018, 44(2): 23-27.
[44]孙金立. 无损检测及在航空维修中的应用[M]. 北京: 国防工业出版社, 2004.
SUN J L.Non destructive testing and its application in aviation maintenance[M].Beijing: National Defence Industry Press, 2004.
[45]党长久, 李明轩. 超声在固体火箭发动机无损检测中的应用[J]. 应用声学,1995, 14(5): 32-38.
DANG C J, LI M X. Applications of ultrasonic techniques to the NDT of solid-propellant rocket motors[J]. Applied Acoustics, 1995, 14(5): 32-38.
[46]史亚男. 喷管羽流对捆绑式运载火箭底部热环境的影响研究[D]. 北京: 北京理工大学, 2016.
SHI Y N.Study on the influence of nozzle plume on the thermal environment at the bottom of bundled launch vehicle[D]. Beijing: Beijing Institute of Technology, 2016.
[47]尹本浩, 冷国俊, 刘芬芬. 涂层及材质对大功率天线热真空试验的影响[J]. 电子机械工程, 2019, 35(6): 12-16.
YIN B H, LENG G J, LIU F F. Effect of different coatings and materials on thermal vacuum test of high power antenna[J]. Electro-Mechanical Engineering, 2019, 35(6): 12-16.
[48]刘占一, 许婷, 张魏静, 等. 热防护材料表面发射率测试研究[J]. 火箭推进, 2019, 45(4): 79-84.
LIU Z Y, XU T, ZHANG W J, et al. Measurement study on surface emissivity of thermal protection material[J]. Journal of Rocket Propulsion, 2019, 45(4): 79-84.
[49]迈克尔·格里夫斯.智能制造之虚拟完美模型: 驱动创新与精益产品[M]. 方志刚, 张振宇,译.北京: 机械工业出版社, 2017.
GRIEVES M. Virtual perfect model of intelligent manufacturing:Drive innovation and lean products[M].FANG Z G,ZHANG Z Y,trans. Beijing: China Machine Press, 2017.
[50]GLAESSGEN E H, STARGEL D S. The digital twin paradigm for future NASA and U.S.air force vehicles[Z]. 2012.
相似文献/References:
[1]陈彦林,许艺峰.液体动力研制体系数字化转型的探索与思考[J].火箭推进,2020,46(04):14.
CHEN Yanlin,XU Yifeng.Exploration and consideration on digital transformation of liquid-propellant engine development system[J].Journal of Rocket Propulsion,2020,46(06):14.
备注/Memo
收稿日期:2024- 04- 15修回日期:2024- 10- 29
基金项目:国防基础科研计划(JCKY2023203C014)
作者简介:韩 明(1976—),男,硕士,研究员,研究领域为液体动力试验技术。