PDF下载 分享
[1]舒小华,王珺,闫松.基于计算机视觉的结构位移测量技术及应用进展综述[J].火箭推进,2024,50(06):40-51.[doi:10.3969/j.issn.1672-9374.2024.06.003]
 SHU Xiaohua,WANG Jun,YAN Song.Progress review of structural displacement measurement technology and application based on computer vision[J].Journal of Rocket Propulsion,2024,50(06):40-51.[doi:10.3969/j.issn.1672-9374.2024.06.003]
点击复制

基于计算机视觉的结构位移测量技术及应用进展综述

参考文献/References:

[1] FENG D M, FENG M Q. Model updating of railway bridge using in-situ dynamic displacement measurement under trainloads[J]. Journal of Bridge Engineering, 2015, 20(12):1-12.
[2]武晓欣, 贾洁羽, 邢理想, 等. 重复使用液体火箭发动机原位无损检测技术应用及展望[J]. 火箭推进, 2024, 50(1): 46-56.
WU X X, JIA J Y, XING L X, et al. Application and prospect of in-situ nondestructive testing of reusable liquid rocket engine[J]. Journal of Rocket Propulsion, 2024, 50(1): 46-56.
[3]邓长华, 王珺, 吴丹, 等. 静力试验空间变形分析方法[J]. 火箭推进, 2020, 46(1): 96-101.
DENG C H, WANG J, WU D, et al. Space deformation analysis method for static test[J]. Journal of Rocket Propulsion, 2020, 46(1): 96-101.
[4]闫松, 李斌, 李锋, 等. 联合静力和动力试验数据修正机架的有限元模型[J]. 火箭推进, 2021, 47(5): 56-64.
YAN S, LI B, LI F, et al. Finite element model updating of thrust frame combining static and dynamic test data[J]. Journal of Rocket Propulsion, 2021, 47(5): 56-64.
[5]叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述[J]. 中国公路学报, 2019, 32(11): 21-39.
YE X W, DONG C Z. Review of computer vision-based structural displacement monitoring[J]. China Journal of Highway and Transport, 2019, 32(11): 21-39.
[6]徐祥. 基于多个加速度传感器融合的铁路桥墩位移测量方法研究[D]. 扬州: 扬州大学, 2021.
XU X.Research on displacement measurement method of railway pier based on fusion of multiple acceleration sensors[D]. Yangzhou: Yangzhou University, 2021.
[7]刘冰. 基于拉绳位移传感器的飞机大部件对接位姿测量方法研究[D]. 西安: 西安工业大学, 2023.
LIU B.Research on measurement method of docking position and attitude of large aircraft parts based on cable displacement sensor[D]. Xi'an: Xi'an Technological University, 2023.
[8]黄太誉. 飞机强度试验大变形位移测量技术研究与应用[J]. 工程与试验, 2018, 58(3): 13-16.
HUANG T Y. Research and application of large deformation displacement measurement technology for aircraft strength test[J]. Engineering & Test, 2018, 58(3): 13-16.
[9]RIBEIRO D, CALÇADA R, FERREIRA J, et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system[J]. Engineering Structures, 2014, 75: 164-180.
[10]赵帅, 王胜, 杨淑娟, 等. 基于GNSS技术的结构位移监测应用研究进展[J]. 施工技术(中英文), 2022, 51(21): 6-10.
ZHAO S, WANG S, YANG S J, et al. Research progress of structural displacement monitoring based on GNSS technology[J]. Construction Technology, 2022, 51(21): 6-10.
[11]周云, 程依婷. 基于数字图像相关理论的非接触式结构位移测量方法[J]. 湖南大学学报(自然科学版), 2021, 48(5): 1-9.
ZHOU Y, CHENG Y T. Non-contact structural displacement measurement based on digital image correlation method[J]. Journal of Hunan University(Natural Sciences), 2021, 48(5): 1-9.
[12]周豪, 李得睿, 王凯, 等. 多点动位移数字图像相关法光测技术研究[J]. 科学技术与工程, 2023, 23(18): 7709-7715.
ZHOU H, LI D R, WANG K, et al. Digital image correlation optical measurement and system development for multi-points dynamic displacement[J]. Science Technology and Engineering, 2023, 23(18): 7709-7715.
[13]DONG C Z, CATBAS F N. A non-target structural displacement measurement method using advanced feature matching strategy[J]. Advances in Structural Engineering, 2019, 22(16): 3461-3472.
[14]FENG D M, FENG M Q, OZER E, et al. A vision-based sensor for noncontact structural displacement measurement[J]. Sensors, 2015, 15(7): 16557-16575.
[15]FENG D M, FENG M Q. Experimental validation of cost-effective vision-based structural health monitoring[J]. Mechanical Systems and Signal Processing, 2017, 88: 199-211.
[16]BINH DO P N, CHI NGUYEN Q. A review of stereo-photogrammetry method for 3-D reconstruction in computer vision[C]//2019 19th International Symposium on Communications and Information Technologies(ISCIT).New York:IEEE, 2019.
[17] WROBEL B P. Multiple view geometry in computer vision[J]. Kybernetes, 2001, 30(9/10): 1333-1341.
[18]吕朝辉, 张兆杨, 安平. 基于神经网络的立体视觉摄像机标定[J]. 机械工程学报, 2003, 39(9): 93-96.
LYU C H, ZHANG Z Y, AN P. Camera calibration for stereo vision based on neural network[J]. Chinese Journal of Mechanical Engineering, 2003, 39(9): 93-96.
[19]胡志新, 王涛. 改进遗传算法优化BP神经网络的双目相机标定[J]. 电光与控制, 2022, 29(1): 75-79.
HU Z X, WANG T. Binocular camera calibration based on BP neural network optimized by improved genetic algorithm[J]. Electronics Optics & Control, 2022, 29(1): 75-79.
[20]王宗盛, 苏志龙, 韩永胜, 等. 基于图像特征分布优化的相机外参自标定[J]. 中国科学(技术科学), 2021, 51(11): 1410-1418.
WANG Z S, SU Z L, HAN Y S, et al. External parameter calibration based on image feature distribution optimization[J]. Scientia Sinica(Technologica), 2021, 51(11): 1410-1418.
[21]ABDEL-AZIZZ Y, KARARA H M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[C]//Proceedings of the Symposium on Close-range Photogrammetry. Falls Church: American Society of Photogrammetry, 1971:1-18.
[22]SUN Q, WANG X Y, XU J P, et al. Camera self-calibration with lens distortion[J]. Optik, 2016,127(10):4506-4513.
[23]HEIKKILA J, SILVEN O. A four-step camera calibration procedure with implicit image correction[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:IEEE, 1997.
[24]ABDEL-AZIZ Y I, KARARA H M, HAUCK M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(2): 103-107.
[25]TSAI R Y, HUANG T S. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1): 13-27.
[26]ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[27] 于起峰, 张强, 陈文均, 等. 大型工程结构静动态变形摄像测量方法与应用(特邀)[J]. 激光与光电子学进展, 2024, 61(1): 129-142.
YU Q F, ZHANG Q, CHEN W J, et al. Videometrics methods and applications of static and dynamic deformation of large-scale structures(invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 129-142.
[28]MORAVE H P.Obstacle avoidance and navigation in the real world by a seeing robot rover[D]. San Francisco:Stanford University,1980.
[29]HARRIS C,STEPHENS M. A combined corner and edge detector[C]//4th Alvey Vision Conference.Manchester, UK: British Machine Vision Association,1988.
[30]SHI J,TOMASI C. Good features to track[C]//IEEE Computer Society Conference On Computer Vision And Pattern Recognition. New York:IEEE,1994.
[31] 夏海英, 刘伟涛, 朱勇建. 一种改进的快速SUSAN棋盘格角点检测算法[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 44-52.
XIA H Y, LIU W T, ZHU Y J. An improved fast SUSAN chessboard corner detection algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44-52.
[32]TRAJKOVIC M, HEDLEY M. Fast corner detection[J]. Image and Vision Computing, 1998, 16: 75-87.
[33]YOO J C, HAN T H. Fast normalized cross-correlation[J]. Circuits, Systems and Signal Processing, 2009, 28(6): 819-843.
[34]FENG D M, FENG M Q. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection-A review[J]. Engineering Structures, 2018, 156: 105-117.
[35]潘兵, 续伯钦, 陈丁, 等. 数字图像相关中亚像素位移测量的曲面拟合法[J]. 计量学报, 2005, 26(2): 128-134.
PAN B, XU B Q, CHEN D, et al. Sub-pixel registration using quadratic surface fitting in digital image correlation[J]. Acta Metrologica Sinica, 2005, 26(2): 128-134.
[36]HELFRICK M N, NIEZRECKI C, AVITABILE P, et al. 3D digital image correlation methods for full-field vibration measurement[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 917-927.
[37]PAN B, QIAN K M, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review[J]. Measurement Science and Technology, 2009, 20(6): 062001.
[38]YAMAGUCHI I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14: 1270-1273.
[39]PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427.
[40]南亨, 唐忠林, 赵伟博, 等. 基于三维数字图像相关法的非接触式动态位移测量方法研究[J]. 计算机测量与控制, 2022, 30(2): 65-71.
NAN H, TANG Z L, ZHAO W B, et al. Non-contact dynamic displacement measurement method based on 3D digital image correlation technology[J]. Computer Measurement & Control, 2022, 30(2): 65-71.
[41]BAY B K, SMITH T S, FYHRIE D P, et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics, 1999, 39(3): 217-226.
[42]LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[43]BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[M]//Lecture Notes in Computer Science. Berlin: Springer, 2006.
[44]GIBSON J J. The perception of the visual world[M]. Cambridge: Riverside Press,1950.
[45]HORN B K P,SCHUNCK B G. Determining optical flow[J].Artificial Intelligence,1981,17(1):185-203.
[46]LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[EB/OL].https://www.semanticscholar.org/paper/An-Iterative-Image-Registration-Technique-with-an-Lucas-Kanade/a06547951c97b2a32f23a6c2b5f79c8c75c9b9bd, 1981.
[47]BOUGUET J Y. Pyramidal implementation of the lucas kanade feature tracker description of the algorithm[Z]. 1999.
[48]FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion[M]//Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg, 2003.
[49]BROX T, BRUHN A, PAPENBERG N, et al. High accuracy optical flow estimation based on a theory for warping[M]//Lecture Notes in Computer Science. Berlin: Springer, 2004.
[50]SUN D Q, ROTH S, BLACK M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International Journal of Computer Vision, 2014, 106(2): 115-137.
[51]XIAO J J, CHENG H, SAWHNEY H, et al. Bilateral filtering-based optical flow estimation with occlusion detection[M]//Lecture Notes in Computer Science. Berlin: Springer, 2006.
[52]DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: Learning optical flow with convolutional networks[C]//2015 IEEE International Conference on Computer Vision(ICCV).New York:IEEE, 2015.
[53]ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: Evolution of optical flow estimation with deep networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York:IEEE, 2017.
[54]MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).New York:IEEE, 2016.
[55]LAI H Y, TSAI Y H, CHIU W C. Bridging stereo matching and optical flow via spatiotemporal correspondence[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New York:IEEE, 2019.
[56]GRADL P R. Digital image correlation techniques applied to large scale rocket engine testing[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016.
[57]陈凡秀, 陈旭, 谢辛, 等. 多相机3D-DIC及其在高温变形测量中的应用[J]. 实验力学, 2015, 30(2): 157-164.
CHEN F X, CHEN X, XIE X, et al. On the multiple camera 3D-DIC system and its application in deformation measurement at high temperature[J]. Journal of Experimental Mechanics, 2015, 30(2): 157-164.
[58]杜鹏, 邵帅, 余忠儒, 等. 桥梁全息性态特征提取方法试验研究[J]. 科学技术与工程, 2020, 20(25): 10459-10465.
DU P, SHAO S, YU Z R, et al. Experimental study on the holographic feature extraction method of bridge[J]. Science Technology and Engineering, 2020, 20(25): 10459-10465.
[59]高玉闪, 闫松, 张志伟. 基于双目视觉和圆形标记点的发动机位移精确测试技术[J]. 航空学报, 2024, 45(11): 165-174.
GAO Y S, YAN S, ZHANG Z W. Precise engine displacement testing technique based on stereo vision and circular mark points[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 165-174.
[60]杜永峰, 马天军, 韩博, 等. 基于尺度不变特征变换算法(SIFT)立体匹配的结构三维振动位移监测[J]. 工业建筑, 2023, 53(12): 105-112.
DU Y F, MA T J, HAN B, et al. 3D vibration displacement monitoring of structures base on SIFT stereo matching[J]. Industrial Construction, 2023, 53(12): 105-112.
[61]张晓勤, 杨晓洪. 融合互相关法与光流法的测流方法[J]. 中国水运, 2023, 23(2): 98-100.
ZHANG X Q, YANG X H.Flow measurement method combining cross-correlation method and optical flow method[J]. China Water Transport, 2023, 23(2): 98-100.
[62]GONG X L, BANSMER S, STROBACH C, et al. Deformation measurement of a birdlike airfoil with optical flow and numerical simulation[J]. AIAA Journal, 2014, 52(12): 2807-2816.
[63]GONG X L, BANSMER S. Horn-Schunck optical flow applied to deformation measurement of a birdlike airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1305-1315.
[64]DONG C Z, CELIK O, CATBAS F N, et al. Structural displacement monitoring using deep learning-based full field optical flow methods[J]. Structure and Infrastructure Engineering, 2020, 16(1): 51-71.

备注/Memo

收稿日期:2024- 05- 21修回日期:2024- 08- 26
基金项目:国家重点项目
作者简介:舒小华(1999—),男,硕士研究生,研究领域为视觉测量,发动机结构强度与振动。

更新日期/Last Update: 1900-01-01