航天推进技术研究院主办
SHU Xiaohua,WANG Jun,YAN Song.Progress review of structural displacement measurement technology and application based on computer vision[J].Journal of Rocket Propulsion,2024,50(06):40-51.[doi:10.3969/j.issn.1672-9374.2024.06.003]
基于计算机视觉的结构位移测量技术及应用进展综述
- Title:
- Progress review of structural displacement measurement technology and application based on computer vision
- 文章编号:
- 1672-9374(2024)06-0040-12
- Keywords:
- visual measurement; computer vision; structural displacement; non-contact measurement; application progress
- 分类号:
- O346
- 文献标志码:
- A
- 摘要:
- 基于计算机视觉的结构位移测量技术以非接触、无附加质量、高空间分辨率、测量周期短、测试简便等优势引发了众多学者的关注和研究,产出了众多成果。其中部分成果已经成功应用在火箭发动机整机、机架、管路等结构的力学试验,大型工程结构状态评估和健康监测中。为促进基于计算机视觉的结构位移测量技术更好应用于液体火箭发动机工程中,对近来关于应用计算机视觉测量结构位移的技术和实际工程应用进展进行了综述。首先,概述了基于计算机视觉测量结构位移相对于其他测量方法的显著优势; 其次,总结概述了基于计算机视觉的结构位移测量技术; 在此基础上,介绍了基于计算机视觉的结构位移测量技术在实际工程中的应用,并对实际测量结果进行了概述; 最后,对基于计算机视觉的结构位移测量在实际应用中面临的问题进行总结,对未来基于计算机视觉的结构位移测量技术进行了展望。
- Abstract:
- With the advantages of non-contact, no additional mass, high spatial resolution, short measurement cycle, and easy testing, the structural displacement measurement technology based on computer vision has attracted the attention and research of many scholars, and has produced numerous achievement. Some of these achievements have been successfully applied in the mechanical testing of rocket engine, frame, pipeline and other structures, as well as in the state assessment and health monitoring of large engineering structures. In order to promote the better application of computer vision-based structural displacement measurement technology in liquid rocket motor engineering, recent advances in technology and practical engineering applications of computer vision-based structural displacement measurement are summarized. Firstly, the significant advantages of computer vision-based structural displacement measurement over other measurement methods are outlined. Secondly, the computer vision-based structural displacement measurement technology is summarized and outlined. On this basis, the application of computer vision-based structural displacement measurement technology in practical engineering is introduced and the actual measurement results are outlined. Finally, the problems faced in the practical application of computer vision-based structural displacement measurement are summarized, and the future of computer vision-based structural displacement measurement technology is prospected.
参考文献/References:
[1] FENG D M, FENG M Q. Model updating of railway bridge using in-situ dynamic displacement measurement under trainloads[J]. Journal of Bridge Engineering, 2015, 20(12):1-12.
[2]武晓欣, 贾洁羽, 邢理想, 等. 重复使用液体火箭发动机原位无损检测技术应用及展望[J]. 火箭推进, 2024, 50(1): 46-56.
WU X X, JIA J Y, XING L X, et al. Application and prospect of in-situ nondestructive testing of reusable liquid rocket engine[J]. Journal of Rocket Propulsion, 2024, 50(1): 46-56.
[3]邓长华, 王珺, 吴丹, 等. 静力试验空间变形分析方法[J]. 火箭推进, 2020, 46(1): 96-101.
DENG C H, WANG J, WU D, et al. Space deformation analysis method for static test[J]. Journal of Rocket Propulsion, 2020, 46(1): 96-101.
[4]闫松, 李斌, 李锋, 等. 联合静力和动力试验数据修正机架的有限元模型[J]. 火箭推进, 2021, 47(5): 56-64.
YAN S, LI B, LI F, et al. Finite element model updating of thrust frame combining static and dynamic test data[J]. Journal of Rocket Propulsion, 2021, 47(5): 56-64.
[5]叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述[J]. 中国公路学报, 2019, 32(11): 21-39.
YE X W, DONG C Z. Review of computer vision-based structural displacement monitoring[J]. China Journal of Highway and Transport, 2019, 32(11): 21-39.
[6]徐祥. 基于多个加速度传感器融合的铁路桥墩位移测量方法研究[D]. 扬州: 扬州大学, 2021.
XU X.Research on displacement measurement method of railway pier based on fusion of multiple acceleration sensors[D]. Yangzhou: Yangzhou University, 2021.
[7]刘冰. 基于拉绳位移传感器的飞机大部件对接位姿测量方法研究[D]. 西安: 西安工业大学, 2023.
LIU B.Research on measurement method of docking position and attitude of large aircraft parts based on cable displacement sensor[D]. Xi'an: Xi'an Technological University, 2023.
[8]黄太誉. 飞机强度试验大变形位移测量技术研究与应用[J]. 工程与试验, 2018, 58(3): 13-16.
HUANG T Y. Research and application of large deformation displacement measurement technology for aircraft strength test[J]. Engineering & Test, 2018, 58(3): 13-16.
[9]RIBEIRO D, CALÇADA R, FERREIRA J, et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system[J]. Engineering Structures, 2014, 75: 164-180.
[10]赵帅, 王胜, 杨淑娟, 等. 基于GNSS技术的结构位移监测应用研究进展[J]. 施工技术(中英文), 2022, 51(21): 6-10.
ZHAO S, WANG S, YANG S J, et al. Research progress of structural displacement monitoring based on GNSS technology[J]. Construction Technology, 2022, 51(21): 6-10.
[11]周云, 程依婷. 基于数字图像相关理论的非接触式结构位移测量方法[J]. 湖南大学学报(自然科学版), 2021, 48(5): 1-9.
ZHOU Y, CHENG Y T. Non-contact structural displacement measurement based on digital image correlation method[J]. Journal of Hunan University(Natural Sciences), 2021, 48(5): 1-9.
[12]周豪, 李得睿, 王凯, 等. 多点动位移数字图像相关法光测技术研究[J]. 科学技术与工程, 2023, 23(18): 7709-7715.
ZHOU H, LI D R, WANG K, et al. Digital image correlation optical measurement and system development for multi-points dynamic displacement[J]. Science Technology and Engineering, 2023, 23(18): 7709-7715.
[13]DONG C Z, CATBAS F N. A non-target structural displacement measurement method using advanced feature matching strategy[J]. Advances in Structural Engineering, 2019, 22(16): 3461-3472.
[14]FENG D M, FENG M Q, OZER E, et al. A vision-based sensor for noncontact structural displacement measurement[J]. Sensors, 2015, 15(7): 16557-16575.
[15]FENG D M, FENG M Q. Experimental validation of cost-effective vision-based structural health monitoring[J]. Mechanical Systems and Signal Processing, 2017, 88: 199-211.
[16]BINH DO P N, CHI NGUYEN Q. A review of stereo-photogrammetry method for 3-D reconstruction in computer vision[C]//2019 19th International Symposium on Communications and Information Technologies(ISCIT).New York:IEEE, 2019.
[17] WROBEL B P. Multiple view geometry in computer vision[J]. Kybernetes, 2001, 30(9/10): 1333-1341.
[18]吕朝辉, 张兆杨, 安平. 基于神经网络的立体视觉摄像机标定[J]. 机械工程学报, 2003, 39(9): 93-96.
LYU C H, ZHANG Z Y, AN P. Camera calibration for stereo vision based on neural network[J]. Chinese Journal of Mechanical Engineering, 2003, 39(9): 93-96.
[19]胡志新, 王涛. 改进遗传算法优化BP神经网络的双目相机标定[J]. 电光与控制, 2022, 29(1): 75-79.
HU Z X, WANG T. Binocular camera calibration based on BP neural network optimized by improved genetic algorithm[J]. Electronics Optics & Control, 2022, 29(1): 75-79.
[20]王宗盛, 苏志龙, 韩永胜, 等. 基于图像特征分布优化的相机外参自标定[J]. 中国科学(技术科学), 2021, 51(11): 1410-1418.
WANG Z S, SU Z L, HAN Y S, et al. External parameter calibration based on image feature distribution optimization[J]. Scientia Sinica(Technologica), 2021, 51(11): 1410-1418.
[21]ABDEL-AZIZZ Y, KARARA H M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[C]//Proceedings of the Symposium on Close-range Photogrammetry. Falls Church: American Society of Photogrammetry, 1971:1-18.
[22]SUN Q, WANG X Y, XU J P, et al. Camera self-calibration with lens distortion[J]. Optik, 2016,127(10):4506-4513.
[23]HEIKKILA J, SILVEN O. A four-step camera calibration procedure with implicit image correction[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:IEEE, 1997.
[24]ABDEL-AZIZ Y I, KARARA H M, HAUCK M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(2): 103-107.
[25]TSAI R Y, HUANG T S. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1): 13-27.
[26]ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[27] 于起峰, 张强, 陈文均, 等. 大型工程结构静动态变形摄像测量方法与应用(特邀)[J]. 激光与光电子学进展, 2024, 61(1): 129-142.
YU Q F, ZHANG Q, CHEN W J, et al. Videometrics methods and applications of static and dynamic deformation of large-scale structures(invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 129-142.
[28]MORAVE H P.Obstacle avoidance and navigation in the real world by a seeing robot rover[D]. San Francisco:Stanford University,1980.
[29]HARRIS C,STEPHENS M. A combined corner and edge detector[C]//4th Alvey Vision Conference.Manchester, UK: British Machine Vision Association,1988.
[30]SHI J,TOMASI C. Good features to track[C]//IEEE Computer Society Conference On Computer Vision And Pattern Recognition. New York:IEEE,1994.
[31] 夏海英, 刘伟涛, 朱勇建. 一种改进的快速SUSAN棋盘格角点检测算法[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 44-52.
XIA H Y, LIU W T, ZHU Y J. An improved fast SUSAN chessboard corner detection algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44-52.
[32]TRAJKOVIC M, HEDLEY M. Fast corner detection[J]. Image and Vision Computing, 1998, 16: 75-87.
[33]YOO J C, HAN T H. Fast normalized cross-correlation[J]. Circuits, Systems and Signal Processing, 2009, 28(6): 819-843.
[34]FENG D M, FENG M Q. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection-A review[J]. Engineering Structures, 2018, 156: 105-117.
[35]潘兵, 续伯钦, 陈丁, 等. 数字图像相关中亚像素位移测量的曲面拟合法[J]. 计量学报, 2005, 26(2): 128-134.
PAN B, XU B Q, CHEN D, et al. Sub-pixel registration using quadratic surface fitting in digital image correlation[J]. Acta Metrologica Sinica, 2005, 26(2): 128-134.
[36]HELFRICK M N, NIEZRECKI C, AVITABILE P, et al. 3D digital image correlation methods for full-field vibration measurement[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 917-927.
[37]PAN B, QIAN K M, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review[J]. Measurement Science and Technology, 2009, 20(6): 062001.
[38]YAMAGUCHI I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14: 1270-1273.
[39]PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427.
[40]南亨, 唐忠林, 赵伟博, 等. 基于三维数字图像相关法的非接触式动态位移测量方法研究[J]. 计算机测量与控制, 2022, 30(2): 65-71.
NAN H, TANG Z L, ZHAO W B, et al. Non-contact dynamic displacement measurement method based on 3D digital image correlation technology[J]. Computer Measurement & Control, 2022, 30(2): 65-71.
[41]BAY B K, SMITH T S, FYHRIE D P, et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics, 1999, 39(3): 217-226.
[42]LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[43]BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[M]//Lecture Notes in Computer Science. Berlin: Springer, 2006.
[44]GIBSON J J. The perception of the visual world[M]. Cambridge: Riverside Press,1950.
[45]HORN B K P,SCHUNCK B G. Determining optical flow[J].Artificial Intelligence,1981,17(1):185-203.
[46]LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[EB/OL].https://www.semanticscholar.org/paper/An-Iterative-Image-Registration-Technique-with-an-Lucas-Kanade/a06547951c97b2a32f23a6c2b5f79c8c75c9b9bd, 1981.
[47]BOUGUET J Y. Pyramidal implementation of the lucas kanade feature tracker description of the algorithm[Z]. 1999.
[48]FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion[M]//Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg, 2003.
[49]BROX T, BRUHN A, PAPENBERG N, et al. High accuracy optical flow estimation based on a theory for warping[M]//Lecture Notes in Computer Science. Berlin: Springer, 2004.
[50]SUN D Q, ROTH S, BLACK M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International Journal of Computer Vision, 2014, 106(2): 115-137.
[51]XIAO J J, CHENG H, SAWHNEY H, et al. Bilateral filtering-based optical flow estimation with occlusion detection[M]//Lecture Notes in Computer Science. Berlin: Springer, 2006.
[52]DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: Learning optical flow with convolutional networks[C]//2015 IEEE International Conference on Computer Vision(ICCV).New York:IEEE, 2015.
[53]ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: Evolution of optical flow estimation with deep networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York:IEEE, 2017.
[54]MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).New York:IEEE, 2016.
[55]LAI H Y, TSAI Y H, CHIU W C. Bridging stereo matching and optical flow via spatiotemporal correspondence[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New York:IEEE, 2019.
[56]GRADL P R. Digital image correlation techniques applied to large scale rocket engine testing[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016.
[57]陈凡秀, 陈旭, 谢辛, 等. 多相机3D-DIC及其在高温变形测量中的应用[J]. 实验力学, 2015, 30(2): 157-164.
CHEN F X, CHEN X, XIE X, et al. On the multiple camera 3D-DIC system and its application in deformation measurement at high temperature[J]. Journal of Experimental Mechanics, 2015, 30(2): 157-164.
[58]杜鹏, 邵帅, 余忠儒, 等. 桥梁全息性态特征提取方法试验研究[J]. 科学技术与工程, 2020, 20(25): 10459-10465.
DU P, SHAO S, YU Z R, et al. Experimental study on the holographic feature extraction method of bridge[J]. Science Technology and Engineering, 2020, 20(25): 10459-10465.
[59]高玉闪, 闫松, 张志伟. 基于双目视觉和圆形标记点的发动机位移精确测试技术[J]. 航空学报, 2024, 45(11): 165-174.
GAO Y S, YAN S, ZHANG Z W. Precise engine displacement testing technique based on stereo vision and circular mark points[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 165-174.
[60]杜永峰, 马天军, 韩博, 等. 基于尺度不变特征变换算法(SIFT)立体匹配的结构三维振动位移监测[J]. 工业建筑, 2023, 53(12): 105-112.
DU Y F, MA T J, HAN B, et al. 3D vibration displacement monitoring of structures base on SIFT stereo matching[J]. Industrial Construction, 2023, 53(12): 105-112.
[61]张晓勤, 杨晓洪. 融合互相关法与光流法的测流方法[J]. 中国水运, 2023, 23(2): 98-100.
ZHANG X Q, YANG X H.Flow measurement method combining cross-correlation method and optical flow method[J]. China Water Transport, 2023, 23(2): 98-100.
[62]GONG X L, BANSMER S, STROBACH C, et al. Deformation measurement of a birdlike airfoil with optical flow and numerical simulation[J]. AIAA Journal, 2014, 52(12): 2807-2816.
[63]GONG X L, BANSMER S. Horn-Schunck optical flow applied to deformation measurement of a birdlike airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1305-1315.
[64]DONG C Z, CELIK O, CATBAS F N, et al. Structural displacement monitoring using deep learning-based full field optical flow methods[J]. Structure and Infrastructure Engineering, 2020, 16(1): 51-71.
备注/Memo
收稿日期:2024- 05- 21修回日期:2024- 08- 26
基金项目:国家重点项目
作者简介:舒小华(1999—),男,硕士研究生,研究领域为视觉测量,发动机结构强度与振动。