PDF下载 分享
[1]谭鸿强,张建明,杨娟,等.超声波液体推进剂气泡检测技术研究综述[J].火箭推进,2024,50(06):52-68.[doi:10.3969/j.issn.1672-9374.2024.06.004]
 TAN Hongqiang,ZHANG Jianming,YANG Juan,et al.Review on ultrasonic bubble detection technology for liquid propellant[J].Journal of Rocket Propulsion,2024,50(06):52-68.[doi:10.3969/j.issn.1672-9374.2024.06.004]
点击复制

超声波液体推进剂气泡检测技术研究综述

参考文献/References:

[1] AKTINOL E, WARRIER G R, DHIR V K. Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid[J]. International Journal of Heat and Mass Transfer, 2014, 79: 251-268.
[2]王爱玲, 梁兴国. 液体推进剂火灾爆炸事故类型分析及其预防[J]. 火箭推进, 2009, 35(2): 58-62.
WANG A L, LIANG X G. Analysis of fire and explosion accidents of liquid propellants and the prevention[J]. Journal of Rocket Propulsion, 2009, 35(2): 58-62.
[3]燕珂, 单世群, 王莉红, 等. 液体推进剂热稳定性研究方法探讨[J]. 火箭推进, 2014, 40(2): 90-94.
YAN K, SHAN S Q, WANG L H, et al. Research approach for thermal stability of liquid propellant[J]. Journal of Rocket Propulsion, 2014, 40(2): 90-94.
[4]宋春雨, 李强, 周昊, 等. 温度敏感凝胶推进剂中气泡运动特性研究[J]. 力学学报, 2023, 55(9): 1880-1891.
SONG C Y, LI Q, ZHOU H, et al. Bubble dynamics in temperature sensitive non-Newtonian gel propellant[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1880-1891.
[5]刘昌国, 陈锐达, 刘犇, 等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进, 2021, 47(3): 8-15.
LIU C G, CHEN R D, LIU B, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15.
[6]ZHANG Z Y, XU C H, XIE J, et al. MFCC-LSTM framework for leak detection and leak size identification in gas-liquid two-phase flow pipelines based on acoustic emission[J]. Measurement, 2023, 219: 113238.
[7]MALLAT B, GERMAIN G, BILLARD J Y, et al. Breaking wave bubble measurements around ship model by optical probe[J]. Ocean Engineering, 2022, 246: 110438.
[8]ZHAI L S, YANG J, MENG Z H. Detection of transient gas-liquid flow structures in horizontal shale gas well using wire-mesh sensor[J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103013.
[9]MENG J, LIANG F C, HE Z N, et al. Experimental investigation for liquid film characteristics of gas-liquid swirling flow in a horizontal pipe[J]. International Journal of Multiphase Flow, 2023, 161: 104400.
[10]BATSAIKHAN M, HAMDANI A, KIKURA H. Velocity measurement on two-phase air bubble column flow using array ultrasonic velocity profiler[J]. International Journal of Computational Methods and Experimental Measurements, 2017, 6(1): 86-97.
[11]JIN H R, ZHENG Z S, CUI Z Q, et al. A flexible optoacoustic blood ‘stethoscope' for noninvasive multiparametric cardiovascular monitoring[J]. Nature Communications, 2023, 14(1): 4692.
[12]LIN M Y, ZHANG Z Y, GAO X X, et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects[J]. Nature Biotechnology, 2024, 42(3): 448-457.
[13]RODRIGUES D V Q, RODRIGUEZ D, PUGLIESE V, et al. Air bubble detection based on portable mm- wave Doppler radars[C]//2021 IEEE MTT-S International Wireless Symposium(IWS).New York:IEEE, 2021.
[14]孙迎霞, 王浩, 陈剑, 等. 液体推进剂的新型加注方法[J]. 火箭推进, 2019, 45(6): 60-65.
SUN Y X, WANG H, CHEN J, et al. A new injection method for liquid propellant[J]. Journal of Rocket Propulsion, 2019, 45(6): 60-65.
[15]刘沛清, 赵芸可. 伯努利方程对流体力学理论建立的历史贡献[J]. 力学与实践, 2020, 42(2): 258-264.
LIU P Q, ZHAO Y K. The historical contribution of Bernoulli's equation to the establishment of fluid mechanics theory[J]. Mechanics in Engineering, 2020, 42(2): 258-264.
[16]陈传宝, 郭铭杰, 刘聪聪, 等. 运载火箭常温液体推进剂加注管内液流夹气研究[J]. 导弹与航天运载技术, 2015(5): 42-45.
CHEN C B, GUO M J, LIU C C, et al. Investigation on gas entrainment in the liquid propellant filling process of launch vehicle[J]. Missiles and Space Vehicles, 2015(5): 42-45.
[17]李翠, 程亦薇, 庄钰涵, 等. 液体火箭压差控制交叉输送特性研究[J]. 西安交通大学学报, 2020, 54(4): 165-172.
LI C, CHENG Y W, ZHUANG Y H, et al. A study on flow characteristics of pressure-controlled propellant crossfeed in liquid rocket systems[J]. Journal of Xi'an Jiaotong University, 2020, 54(4): 165-172.
[18]闫春杰, 郑永煜, 杨祺, 等. 微重力环境下低温推进剂贮箱内气液界面形变特性研究[J]. 真空与低温, 2022, 28(3): 285-290.
YAN C J, ZHENG Y Y, YANG Q, et al. Deformation characteristics of gas-liquid interface in cryogenic propellant tank under microgravity environment[J]. Vacuum and Cryogenics, 2022, 28(3): 285-290.
[19]黄晓宁, 王磊, 毛红威, 等. 火箭升空低温推进剂出流特性仿真研究[J]. 制冷学报, 2020, 41(4): 136-143.
HUANG X N, WANG L, MAO H W, et al. Simulation study on outflow characteristics of cryogenic propellant during rocket ascent[J]. Journal of Refrigeration, 2020, 41(4): 136-143.
[20]刘柏文, 徐元元, 雷刚, 等. 典型低温推进剂的热力学性能参数评估[J]. 火箭推进, 2023, 49(1): 44-53.
LIU B W, XU Y Y, LEI G, et al. Evaluation of thermodynamic performance parameters for typical cryogenic propellant[J]. Journal of Rocket Propulsion, 2023, 49(1): 44-53.
[21]VISHNU S B, KUZHIVELI B T. Effect of micro- and elevated gravity condition on the evolution of stratification and self-pressurization in a cryogenic propellant tank[J]. Sādhanā, 2019, 44(3): 63.
[22]WANG L, WANG J J, SHANGGUAN S, et al. Numerical investigation on spilling upward performance of hydrogen bubbles inside a delivery tube under low-gravity environment[J]. Cryogenics, 2021, 118: 103333.
[23]CHEN W G, HUANG G Y, HU Y B, et al. Experimental study on continuous spectrum bubble generator with a new overlapping bubbles image processing technique[J]. Chemical Engineering Science, 2022, 254: 117613.
[24]吴兆伟, 施浙杭, 赵辉, 等. 表面张力变化对含气泡液体射流破裂的影响[J]. 化工学报, 2021, 72(3): 1283-1294.
WU Z W, SHI Z H, ZHAO H, et al. Effects of surface tension variations on breakup of liquid jet with inner bubbles[J]. CIESC Journal, 2021, 72(3): 1283-1294.
[25]方杰, 王尊, 严浩, 等. 双模式离子液体推进剂真空条件催化点火特性[J]. 火箭推进, 2022,48(5): 1-8.
FANG J, WANG Z, YAN H, et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[26]宇文雷, 高永, 刘学, 等. 推进剂加注后卫星封闭管路内压力爬升特性研究[J]. 化学推进剂与高分子材料, 2022,20(5): 39-44.
YUWEN L, GAO Y, LIU X, et al. Study on pressure climbout characteristic in liquid-locked pipeline of satellite after filling propellant[J]. Chemical Propellants & Polymeric Materials, 2022, 20(5): 39-44.
[27]高鹤, 李少龙, 严浩, 等. 双模式离子液体推进剂的分解特性与热试车实验研究[J]. 空间控制技术与应用, 2021,47(4): 41-47.
GAO H, LI S L, YAN H, et al. The decomposition characteristics and the hot fire test of a dual-mode ionic liquid propellant[J]. Aerospace Control and Application, 2021, 47(4): 41-47.
[28]ZABULIS X, KARAMAOUNAS P, OIKONOMIDOU O, et al. Advances on the detection and measurement of bubble contours during subcooled boiling in microgravity[J]. Measurement, 2023, 222: 113644.
[29]ZHOU W, MIWA S, TSUJIMURA R, et al. Bubble feature extraction in subcooled flow boiling using AI-based object detection and tracking techniques[J]. International Journal of Heat and Mass Transfer, 2024, 222: 125188.
[30]TAKAHASHI K, TAKAYAMA H, KOBAYASHI S, et al. Observation of the development of pulsed discharge inside a bubble under water using ICCD cameras[Z]. 2020.
[31]SHI H T, ZHANG H P, LI W, et al. An on-chip inductive-capacitive sensor for the detection of wear debris and air bubbles in hydraulic oil[C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS).New York:IEEE, 2021.
[32]ABEGAZ B W, DICK N T, MAHAJAN S M. Measurement and characterization of fluid flow profile using electrical capacitance tomography[C]//IEEE SOUTHEASTCON 2014.New York:IEEE, 2014.
[33]孙犇渊, 王化祥, 王丕涛. 基于内部阵列电极的电容层析成像系统[J]. 传感技术学报, 2013, 26(6): 820-824.
SUN B Y, WANG H X, WANG P T. An electrical capacitance tomography based on internal array electrodes[J]. Chinese Journal of Sensors and Actuators, 2013, 26(6): 820-824.
[34]李效霖, 孙江涛, 田文斌, 等. 微小卫星液化推进剂气化过程可视化检测方法[J]. 空间控制技术与应用, 2021, 47(4): 93-102.
LI X L, SUN J T, TIAN W B, et al. Visual detection method for gasification process of micro satellite liquefied propellant[J]. Aerospace Control and Application, 2021, 47(4): 93-102.
[35]HULME I, KANTZAS A. Determination of bubble diameter and axial velocity for a polyethylene fluidized bed using X-ray fluoroscopy[J]. Powder Technology, 2004, 147(1/2/3): 20-33.
[36]GRAAS A B M, WAGNER E C, VAN LEEUWEN T, et al. X-ray tomography for fully-3D time-resolved reconstruction of bubbling fluidized beds[J]. Powder Technology, 2024, 434: 119269.
[37]蔡健荣, 梁小祥, 许骞, 等. 采用X射线三维重构技术检测厚皮柑橘的体积可食率[J]. 农业工程学报, 2024, 40(1): 293-300.
CAI J R, LIANG X X, XU Q, et al. Detecting volumetric edible rate of thick-skinned citrus using X-ray three-dimensional reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 293-300.
[38]LIU M Z, DI X G, LV T, et al. Towards to Human Intention: A few-shot open-set object detection for X-ray hazard inspection[J]. Neurocomputing, 2024, 577: 127388.
[39]MURAKAWA H, SHIMIZU T, ECKERT S. Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section[J]. Measurement, 2021, 182: 109654.
[40]TIAN S, TAN C, ZHANG Z X, et al. Size, distribution, and acoustic impedance quantization of bubbles and droplets using ultrasonic complex sound pressure[J]. IEEE Sensors Journal, 2024, 24(4): 4628-4641.
[41]赵天锋, 易艳辉, 夏朝阳. 输液气泡检测模块的应用[J]. 电子技术与软件工程, 2021(13): 84-85.
ZHAO T F, YI Y H, XIA C Y.Application of infusion bubble detection module[J]. Electronic Technology & Software Engineering, 2021(13): 84-85.
[42]TAN C, MURAI Y, LIU W L, et al. Ultrasonic Doppler technique for application to multiphase flows: A review[J]. International Journal of Multiphase Flow, 2021, 144: 103811.
[43]史风栋, 张宏伟, 苏焕鑫, 等. 超声多普勒流量信号的多声道互相关检测方法[J]. 传感技术学报, 2021, 34(10): 1334-1339.
SHI F D, ZHANG H W, SU H X, et al. Multi-channel cross-correlation detection method of ultrasonic Doppler flow signal[J]. Chinese Journal of Sensors and Actuators, 2021, 34(10): 1334-1339.
[44]MURAKAWA H, SUGIMOTO K, TAKENAKA N. Effects of the number of pulse repetitions and noise on the velocity data from the ultrasonic pulsed Doppler method with different algorithms[J]. Flow Measurement and Instrumentation, 2014, 40: 9-18.
[45]李吴昊. 基于超声多普勒技术的气液两相流流型识别与流速测量[D]. 景德镇: 景德镇陶瓷大学, 2022.
LI W H.Flow pattern identification and velocity measurement of gas-liquid two-phase flow based on ultrasonic Doppler technology[D]. Jingdezhen: Jingdezhen Ceramic University, 2022.
[46]顾明元. 多普勒超声血液气泡检测仪及其在潜水医学上的应用[J]. 解放军医学杂志, 1980,5(4): 245-247.
GU M Y.Doppler ultrasonic blood bubble detector and its application in diving medicine[J]. Medical Journal of Chinese PLA, 1980, 5(4): 245-247.
[47]TSOCHATZIDIS N A, GUIRAUD P, WILHELM A M, et al. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique[J]. Chemical Engineering Science, 2001, 56(5): 1831-1840.
[48]MURAKAWA H, KIKURA H, ARITOMI M. Application of ultrasonic Doppler method for bubbly flow measurement using two ultrasonic frequencies[J]. Experimental Thermal and Fluid Science, 2005, 29(7): 843-850.
[49]SAKAGAMI R, MURAKAWA H, SUGIMOTO K, et al. Effect of frequency analysis algorithms on velocity data using ultrasonic Doppler method[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. Hamamatsu, Japan:ASMEDC, 2011.
[50]MURAKAWA H, MURAMATSU E, SUGIMOTO K,et al. Development of ultrasonic flowmeter using pulsed doppler method with staggered trigger pulse[Z]. 2016.
[51]ROXAS R, EVANGELISTA M A, SOMBILLO J A, et al. Machine learning based flow regime identification using ultrasonic Doppler data and feature relevance determination[J]. Digital Chemical Engineering, 2022, 3: 100024.
[52]YOON D, HAYASHI T, PARK H J, et al. Ultrasound measurement of large bubbles rising in angled slug pipe flows[J]. Flow Measurement and Instrumentation, 2023, 91: 102357.
[53]DONG X, TAN C, DONG F. Water continuous oil-water flow velocity measurement based on continuous waves ultrasonic doppler method [C]//2015 IEEE International Instrumentation and Measurement Technology Conference(I2MTC)Proceedings. New York:IEEE, 2015.
[54]DONG X X, TAN C, YUAN Y, et al. Measuring oil-water two-phase flow velocity with continuous-wave ultrasound Doppler sensor and drift-flux model[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(5): 1098-1107.
[55]SHI X W. Oil-water two-phase flow velocity measurement based on ultrasonic Doppler spectrum correction[J]. Journal of Mechanical Engineering, 2017, 53(24): 77.
[56]TAN C, DONG X X, DONG F. Continuous wave ultrasonic Doppler modeling for oil-gas-water three-phase flow velocity measurement[J]. IEEE Sensors Journal, 2018, 18(9): 3703-3713.
[57]SHI X W, TAN C, DONG F, et al. Oil-gas-water three-phase flow characterization and velocity measurement based on time-frequency decomposition[J]. International Journal of Multiphase Flow, 2019, 111: 219-231.
[58]DONG F, GAO H, LIU W L, et al. Horizontal oil-water two-phase dispersed flow velocity profile study by ultrasonic Doppler method[J]. Experimental Thermal and Fluid Science, 2019, 102: 357-367.
[59]ZHAI L S, XU B, XIA H Y, et al. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method[J]. Chinese Journal of Chemical Engineering, 2023, 58: 323-340.
[60]MURAI Y, TASAKA Y, NAMBU Y, et al. Ultrasonic detection of moving interfaces in gas-liquid two-phase flow[J]. Flow Measurement and Instrumentation, 2010, 21(3): 356-366.
[61]HAUPTMANN P, LUCKLUM R, PÜTTMER A, et al. Ultrasonic sensors for process monitoring and chemical analysis: State-of-the-art and trends[J]. Sensors and Actuators A: Physical, 1998, 67(1/2/3): 32-48.
[62]HORVAT D, MOINA J, UN I, et al. Laser ultrasonics for bubbly flow detection[J]. Ultrasonics, 1998, 36(1/2/3/4/5): 565-568.
[63]FIGUEIREDO M M F, GONCALVES J L, NAKASHIMA A M V, et al. The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows[J]. Experimental Thermal and Fluid Science, 2016, 70: 29-50.
[64]DE MELO FREIRE FIGUEIREDO M, DE CASTRO TEIXEIRA CARVALHO F, FILETI A M F, et al. Flow pattern classification in water-air vertical flows using a single ultrasonic transducer[J]. Experimental Thermal and Fluid Science, 2020, 119: 110189.
[65]NA G, PARK J H, JO H, et al. Measuring void fraction in vertical air-water bubbly flow using echo intensity and visualization techniques[J]. Progress in Nuclear Energy, 2021, 136: 103731.
[66]CAROTENUTO R, IERO D, PEZZIMENTI F, et al. Ultrasonic ranging using frequency selective attenuation[C]//2021 IEEE International Ultrasonics Symposium(IUS). New York:IEEE, 2021.
[67]SOJAHROOD A J, LI Q, HAGHI H, et al. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations[J]. Ultrasonics Sonochemistry, 2023, 95: 106319.
[68]高永慧, 王冰. 在气液混相介质中测量声透射损失[J]. 大学物理, 2005,24(5): 39-41.
GAO Y H, WANG B. Measuring sound transmission loss in air-liquid mixture[J]. College Physics, 2005, 24(5): 39-41.
[69]王兴国, 常俊杰, 徐久军, 等. 超声波在薄膜介质中传播衰减的评价方法[J]. 中国表面工程, 2008, 21(5): 26-30.
WANG X G, CHANG J J, XU J J, et al. Evaluation of ultrasonic attenuation wave propagation through the thin layers[J]. China Surface Engineering, 2008, 21(5): 26-30.
[70]刘飞, 付建红, 张智, 等. 超声波在钻井液中传播衰减理论研究[J]. 石油钻采工艺, 2012, 34(1): 57-59.
LIU F, FU J H, ZHANG Z, et al. Research of ultrasonic attenuation theory in drilling fluid[J]. Oil Drilling & Production Technology, 2012, 34(1): 57-59.
[71]罗冰. 基于超声波的气液两相流流动特性研究[D]. 杭州: 中国计量学院,2015.
LUO B.Study on flow characteristics of gas-liquid two-phase flow based on ultrasonic wave[D]. Hangzhou: China University of Metrology, 2015.
[72]苏茜, 董峰. 油水两相流超声波衰减测试方法[J]. 中南大学学报(自然科学版), 2016,47(2): 647-653.
SU Q, DONG F. Ultrasound attenuation measurement in oil-water two-phase flow[J]. Journal of Central South University(Science and Technology), 2016, 47(2): 647-653.
[73]程明, 潘勤学, 肖定国, 等. 超声波在水中衰减的频率效应及其对脉冲回波的影响[J]. 计测技术, 2020, 40(1): 19-26.
CHENG M, PAN Q X, XIAO D G, et al. Frequency effect of ultrasonic wave attenuation in water and its influence on pulse echo[J]. Metrology & Measurement Technology, 2020, 40(1): 19-26.
[74]REN W K, JIN N D, ZHANG J C. Modelling of ultrasonic method for measuring gas holdup of oil-gas-water three phase flows[J]. Ultrasonics, 2022, 124: 106740.
[75]REN W K, JIN N D, ZHAI L S. A dual mode ultrasonic method for measuring gas volume fraction in two-phase slug flows[J]. IEEE Sensors Journal, 2023, 23(22): 28012-28020.
[76]YUAN J W, LI Z K, MA Q, et al. Noninvasive fluid bubble detection based on capacitive micromachined ultrasonic transducers[J]. Microsystems & Nanoengineering, 2023, 9: 20.
[77]WEN W, ZONG G H, BI S S. A bubble detection system for propellant filling pipeline[J]. Review of Scientific Instruments, 2014, 85(6): 065106.
[78]秦祚敏, 薛铮, 刘书睿, 等. 基于CMUT环形阵列的反射超声成像方法[J]. 微纳电子技术, 2024, 61(1): 143-149.
QIN Z M, XUE Z, LIU S R, et al. Reflection ultrasonic imaging method based on CMUT ring array[J]. Micronanoelectronic Technology, 2024, 61(1): 143-149.
[79]WU X Q, LI Y B, SU C, et al. Ultrasound computed tomography based on full waveform inversion with source directivity calibration[J]. Ultrasonics, 2023, 132: 107004.
[80]渠明, 邵志伟, 赵伟涛, 等. 灌浆套筒构件密实度超声波层析成像无损检测研究[J]. 工业建筑, 2021, 51(9): 207-215.
QU M, SHAO Z W, ZHAO W T, et al. Research on nondestructive testing of grouting sleeve members by ultrasonic tomography[J]. Industrial Construction, 2021, 51(9): 207-215.
[81]ZHENG J, PENG L H. A deep learning compensated back projection for image reconstruction of electrical capacitance tomography[J]. IEEE Sensors Journal, 2020, 20(9): 4879-4890.
[82]ANG M, TAN A C S, CHEUNG C M G, et al. Optical coherence tomography angiography: A review of current and future clinical applications[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256(2): 237-245.
[83]WANG H G, YANG W Q. Application of electrical capacitance tomography in pharmaceutical fluidised beds:A review[J]. Chemical Engineering Science, 2021, 231: 116236.
[84]NORTON S J, LINZER M. Ultrasonic reflectivity tomography: Reconstruction with circular transducer arrays[J]. Ultrasonic Imaging, 1979, 1(2): 154-184.
[85]AYOB N M N, RAHIMAN M H F, ZAKARIA Z, et al. Detection of small gas bubble using ultrasonic transmission-mode tomography system[C]//2010 IEEE Symposium on Industrial Electronics and Applications(ISIEA). New York:IEEE, 2010.
[86]LANGENER S, VOGT M, ERMERT H, et al. A real-time ultrasound process tomography system using a reflection-mode reconstruction technique[J]. Flow Measurement and Instrumentation, 2017, 53: 107-115.
[87]MURAKAWA H, MAEDA S, ECKERT S. Effects of a horizontal magnetic field on the cross-sectional distribution of gas bubbles chain rising in a gallium alloy[J]. International Journal of Multiphase Flow, 2024, 170: 104649.
[88]ANGERER M, WELSCH J, GERARDO C D, et al. Exploring the potentials of polymer-based CMUTs for 3D ultrasound computed tomography[C]//2023 IEEE International Ultrasonics Symposium(IUS). New York:IEEE, 2023.
[89]BECKER D, SCHMIDT R, LINDNER G, et al. Ultrasound measurement technique for validation of cryogenic flows[C]//EUROSENSORS 2018. Basel,Switzerland: MDPI, 2018.
[90]徐立军. 气/液两相流在线监测用超声层析成象技术及系统的研究[D]. 天津: 天津大学, 1996.
XU L J.Study on ultrasonic tomography technology and system for on-line monitoring of gas/liquid two-phase flow[D]. Tianjin: Tianjin University, 1996.
[91]XU C, TAN C, DONG F. Transmission-mode ultrasonic measurement for gas bubble detection[C]//2014 International Conference on Mechatronics and Control(ICMC).New York:IEEE, 2014.
[92]LI N, XU K. Simulation study on ultrasonic tomography in bubbly gas/liquid two-phase flow[C]//2017 IEEE International Conference on Imaging Systems and Techniques(IST). New York:IEEE, 2017.
[93]LI N, WANG L N, JIA J B, et al. A novel method for the image quality improvement of ultrasonic tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5000810.
[94]TAN C, LI X, LIU H, et al. An ultrasonic transmission/reflection tomography system for industrial multiphase flow imaging[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9539-9548.
[95]ZHAI L S, HUANG Y K, QIAO J W, et al. Measurement of gas holdup in slug region of horizontal oil-gas-water three-phase flow by a distributed ultrasonic sensor[J]. IEEE Sensors Journal, 2024, 24(3): 2547-2557.

相似文献/References:

[1]许 宏,袁仁学,孙 波,等.复合加强型推进剂包装容器设计与验证[J].火箭推进,2015,41(02):87.
 XU Hong,YUAN Ren-xue,SUN Bo,et al.Design and verification of a reinforced integrated vessel for liquid propellants[J].Journal of Rocket Propulsion,2015,41(06):87.
[2]王爱玲,梁兴国.液体推进剂火灾爆炸事故类型分析及其预防[J].火箭推进,2009,35(02):58.
 Wang Ailing,Liang Xingguo.Analysis of fire and explosion accidents of liquid propellants and the prevention[J].Journal of Rocket Propulsion,2009,35(06):58.
[3]符全军.液体推进剂的现状及未来发展趋势[J].火箭推进,2004,(01):1.
[4]李新其,刘祥萱,李红霞,等.液体推进剂贮运可靠性模糊故障树方法研究[J].火箭推进,2004,(05):31.
 Li Xinqi,Liu Xiangxuan,Li Hongxia.Fuzzy Fault Tree Method of the Liquid Propellant Store and Transport Security Estimate and Forecast[J].Journal of Rocket Propulsion,2004,(06):31.
[5]陈军,丁博深,段燕.氢/氧火箭发动机试验自动紧急关机程序设计[J].火箭推进,2016,42(02):69.
 CHEN Jun,DING Boshen,DUAN Yan.Design of automatic emergency cut-off program in LH2/LOX engine test[J].Journal of Rocket Propulsion,2016,42(06):69.
[6]王菊香,瞿 军,邢志娜,等.近红外光谱技术在推进剂质量检测中的应用[J].火箭推进,2018,44(02):82.
 WANG Juxiang,QU Jun,XING Zhina,et al.Application of NIRS analysis technology in liquid propellant quality detection[J].Journal of Rocket Propulsion,2018,44(06):82.
[7]费腾,徐冉,赵鹏宇,等.离子型短点火延迟自燃液体推进剂研究进展[J].火箭推进,2024,50(05):33.[doi:10.3969/j.issn.1672-9374.2024.05.003]
 FEI Teng,XU Ran,ZHAO Pengyu,et al.Research progress on hypergolic ionic liquid propellant with short ignition delay time[J].Journal of Rocket Propulsion,2024,50(06):33.[doi:10.3969/j.issn.1672-9374.2024.05.003]

备注/Memo

收稿日期:2024- 08- 14修回日期:2024- 09- 29
基金项目:国家重点研发计划(2022YFB3205400); 国家自然科学基金(52275570); 重庆市自然科学基础研究(cstc2021jcyj-msxmX0801); 常规液体火箭发动机预包装质量特性检测研究(JSJT-2022-203-B)
作者简介:谭鸿强(2001—),男,硕士研究生,研究领域为火箭推进剂夹气检测以及压电微机械超声换能器。

更新日期/Last Update: 1900-01-01