航天推进技术研究院主办
TAN Hongqiang,ZHANG Jianming,YANG Juan,et al.Review on ultrasonic bubble detection technology for liquid propellant[J].Journal of Rocket Propulsion,2024,50(06):52-68.[doi:10.3969/j.issn.1672-9374.2024.06.004]
超声波液体推进剂气泡检测技术研究综述
- Title:
- Review on ultrasonic bubble detection technology for liquid propellant
- 文章编号:
- 1672-9374(2024)06-0052-17
- 分类号:
- V448.25+1
- 文献标志码:
- A
- 摘要:
- 液体推进剂混入气泡会对发动机的启动和稳定运行产生影响,可能导致发动机突然熄火,造成重大的安全事故和经济损失。因此,准确检测液体推进剂中的气泡具有重要的意义。首先总结了液体推进剂中气泡的形成原因和发展过程。进一步,对现有气泡检测方法的原理、特点以及研究现状进行详细讨论,指出了超声波检测技术在液体推进剂气泡检测的优势。详细阐述了超声波多普勒、超声波衰减、超声波层析的气泡测量原理,并总结了超声气泡检测技术的研究现状以及未来发展的趋势。通过对气泡形成和发展、现有气泡检测方法、超声波气泡检测技术等的介绍和展望,为液体推进剂气泡检测技术发展和后续研究提供了重要参考。
- Abstract:
- Liquid propellant mixed with air bubbles will have an impact on engine start-up and stable operation, which may lead to sudden engine shutdown. And it can also cause major safety incidents and economic losses. Therefore, the accurate detection of air bubbles in liquid rocket propellant delivery pipelines is of great significance. Firstly, this paper summarises the reasons for the formation and development process of bubbles in liquid rocket propellants. Further, the paper provides a detailed discussion of the principles, characteristics, and current research status of existing bubble detection methods. This paper also points out the advantages of ultrasonic detection technology in liquid propellant for pipeline bubble detection. In addition, the paper details the principles of ultrasonic Doppler, ultrasonic attenuation, and ultrasonic chromatography for bubble measurements. At last, this paper summarises the current state of research on ultrasonic bubble detection techniques and the trends for future development. Through the introduction and outlook of bubble formation and development, existing bubble detection methods, and ultrasonic bubble detection technology, this paper provides an important reference for the development of liquid rocket propellant pipeline bubble detection technology and subsequent research.
参考文献/References:
[1] AKTINOL E, WARRIER G R, DHIR V K. Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid[J]. International Journal of Heat and Mass Transfer, 2014, 79: 251-268.
[2]王爱玲, 梁兴国. 液体推进剂火灾爆炸事故类型分析及其预防[J]. 火箭推进, 2009, 35(2): 58-62.
WANG A L, LIANG X G. Analysis of fire and explosion accidents of liquid propellants and the prevention[J]. Journal of Rocket Propulsion, 2009, 35(2): 58-62.
[3]燕珂, 单世群, 王莉红, 等. 液体推进剂热稳定性研究方法探讨[J]. 火箭推进, 2014, 40(2): 90-94.
YAN K, SHAN S Q, WANG L H, et al. Research approach for thermal stability of liquid propellant[J]. Journal of Rocket Propulsion, 2014, 40(2): 90-94.
[4]宋春雨, 李强, 周昊, 等. 温度敏感凝胶推进剂中气泡运动特性研究[J]. 力学学报, 2023, 55(9): 1880-1891.
SONG C Y, LI Q, ZHOU H, et al. Bubble dynamics in temperature sensitive non-Newtonian gel propellant[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1880-1891.
[5]刘昌国, 陈锐达, 刘犇, 等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进, 2021, 47(3): 8-15.
LIU C G, CHEN R D, LIU B, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15.
[6]ZHANG Z Y, XU C H, XIE J, et al. MFCC-LSTM framework for leak detection and leak size identification in gas-liquid two-phase flow pipelines based on acoustic emission[J]. Measurement, 2023, 219: 113238.
[7]MALLAT B, GERMAIN G, BILLARD J Y, et al. Breaking wave bubble measurements around ship model by optical probe[J]. Ocean Engineering, 2022, 246: 110438.
[8]ZHAI L S, YANG J, MENG Z H. Detection of transient gas-liquid flow structures in horizontal shale gas well using wire-mesh sensor[J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103013.
[9]MENG J, LIANG F C, HE Z N, et al. Experimental investigation for liquid film characteristics of gas-liquid swirling flow in a horizontal pipe[J]. International Journal of Multiphase Flow, 2023, 161: 104400.
[10]BATSAIKHAN M, HAMDANI A, KIKURA H. Velocity measurement on two-phase air bubble column flow using array ultrasonic velocity profiler[J]. International Journal of Computational Methods and Experimental Measurements, 2017, 6(1): 86-97.
[11]JIN H R, ZHENG Z S, CUI Z Q, et al. A flexible optoacoustic blood ‘stethoscope' for noninvasive multiparametric cardiovascular monitoring[J]. Nature Communications, 2023, 14(1): 4692.
[12]LIN M Y, ZHANG Z Y, GAO X X, et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects[J]. Nature Biotechnology, 2024, 42(3): 448-457.
[13]RODRIGUES D V Q, RODRIGUEZ D, PUGLIESE V, et al. Air bubble detection based on portable mm- wave Doppler radars[C]//2021 IEEE MTT-S International Wireless Symposium(IWS).New York:IEEE, 2021.
[14]孙迎霞, 王浩, 陈剑, 等. 液体推进剂的新型加注方法[J]. 火箭推进, 2019, 45(6): 60-65.
SUN Y X, WANG H, CHEN J, et al. A new injection method for liquid propellant[J]. Journal of Rocket Propulsion, 2019, 45(6): 60-65.
[15]刘沛清, 赵芸可. 伯努利方程对流体力学理论建立的历史贡献[J]. 力学与实践, 2020, 42(2): 258-264.
LIU P Q, ZHAO Y K. The historical contribution of Bernoulli's equation to the establishment of fluid mechanics theory[J]. Mechanics in Engineering, 2020, 42(2): 258-264.
[16]陈传宝, 郭铭杰, 刘聪聪, 等. 运载火箭常温液体推进剂加注管内液流夹气研究[J]. 导弹与航天运载技术, 2015(5): 42-45.
CHEN C B, GUO M J, LIU C C, et al. Investigation on gas entrainment in the liquid propellant filling process of launch vehicle[J]. Missiles and Space Vehicles, 2015(5): 42-45.
[17]李翠, 程亦薇, 庄钰涵, 等. 液体火箭压差控制交叉输送特性研究[J]. 西安交通大学学报, 2020, 54(4): 165-172.
LI C, CHENG Y W, ZHUANG Y H, et al. A study on flow characteristics of pressure-controlled propellant crossfeed in liquid rocket systems[J]. Journal of Xi'an Jiaotong University, 2020, 54(4): 165-172.
[18]闫春杰, 郑永煜, 杨祺, 等. 微重力环境下低温推进剂贮箱内气液界面形变特性研究[J]. 真空与低温, 2022, 28(3): 285-290.
YAN C J, ZHENG Y Y, YANG Q, et al. Deformation characteristics of gas-liquid interface in cryogenic propellant tank under microgravity environment[J]. Vacuum and Cryogenics, 2022, 28(3): 285-290.
[19]黄晓宁, 王磊, 毛红威, 等. 火箭升空低温推进剂出流特性仿真研究[J]. 制冷学报, 2020, 41(4): 136-143.
HUANG X N, WANG L, MAO H W, et al. Simulation study on outflow characteristics of cryogenic propellant during rocket ascent[J]. Journal of Refrigeration, 2020, 41(4): 136-143.
[20]刘柏文, 徐元元, 雷刚, 等. 典型低温推进剂的热力学性能参数评估[J]. 火箭推进, 2023, 49(1): 44-53.
LIU B W, XU Y Y, LEI G, et al. Evaluation of thermodynamic performance parameters for typical cryogenic propellant[J]. Journal of Rocket Propulsion, 2023, 49(1): 44-53.
[21]VISHNU S B, KUZHIVELI B T. Effect of micro- and elevated gravity condition on the evolution of stratification and self-pressurization in a cryogenic propellant tank[J]. Sādhanā, 2019, 44(3): 63.
[22]WANG L, WANG J J, SHANGGUAN S, et al. Numerical investigation on spilling upward performance of hydrogen bubbles inside a delivery tube under low-gravity environment[J]. Cryogenics, 2021, 118: 103333.
[23]CHEN W G, HUANG G Y, HU Y B, et al. Experimental study on continuous spectrum bubble generator with a new overlapping bubbles image processing technique[J]. Chemical Engineering Science, 2022, 254: 117613.
[24]吴兆伟, 施浙杭, 赵辉, 等. 表面张力变化对含气泡液体射流破裂的影响[J]. 化工学报, 2021, 72(3): 1283-1294.
WU Z W, SHI Z H, ZHAO H, et al. Effects of surface tension variations on breakup of liquid jet with inner bubbles[J]. CIESC Journal, 2021, 72(3): 1283-1294.
[25]方杰, 王尊, 严浩, 等. 双模式离子液体推进剂真空条件催化点火特性[J]. 火箭推进, 2022,48(5): 1-8.
FANG J, WANG Z, YAN H, et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[26]宇文雷, 高永, 刘学, 等. 推进剂加注后卫星封闭管路内压力爬升特性研究[J]. 化学推进剂与高分子材料, 2022,20(5): 39-44.
YUWEN L, GAO Y, LIU X, et al. Study on pressure climbout characteristic in liquid-locked pipeline of satellite after filling propellant[J]. Chemical Propellants & Polymeric Materials, 2022, 20(5): 39-44.
[27]高鹤, 李少龙, 严浩, 等. 双模式离子液体推进剂的分解特性与热试车实验研究[J]. 空间控制技术与应用, 2021,47(4): 41-47.
GAO H, LI S L, YAN H, et al. The decomposition characteristics and the hot fire test of a dual-mode ionic liquid propellant[J]. Aerospace Control and Application, 2021, 47(4): 41-47.
[28]ZABULIS X, KARAMAOUNAS P, OIKONOMIDOU O, et al. Advances on the detection and measurement of bubble contours during subcooled boiling in microgravity[J]. Measurement, 2023, 222: 113644.
[29]ZHOU W, MIWA S, TSUJIMURA R, et al. Bubble feature extraction in subcooled flow boiling using AI-based object detection and tracking techniques[J]. International Journal of Heat and Mass Transfer, 2024, 222: 125188.
[30]TAKAHASHI K, TAKAYAMA H, KOBAYASHI S, et al. Observation of the development of pulsed discharge inside a bubble under water using ICCD cameras[Z]. 2020.
[31]SHI H T, ZHANG H P, LI W, et al. An on-chip inductive-capacitive sensor for the detection of wear debris and air bubbles in hydraulic oil[C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS).New York:IEEE, 2021.
[32]ABEGAZ B W, DICK N T, MAHAJAN S M. Measurement and characterization of fluid flow profile using electrical capacitance tomography[C]//IEEE SOUTHEASTCON 2014.New York:IEEE, 2014.
[33]孙犇渊, 王化祥, 王丕涛. 基于内部阵列电极的电容层析成像系统[J]. 传感技术学报, 2013, 26(6): 820-824.
SUN B Y, WANG H X, WANG P T. An electrical capacitance tomography based on internal array electrodes[J]. Chinese Journal of Sensors and Actuators, 2013, 26(6): 820-824.
[34]李效霖, 孙江涛, 田文斌, 等. 微小卫星液化推进剂气化过程可视化检测方法[J]. 空间控制技术与应用, 2021, 47(4): 93-102.
LI X L, SUN J T, TIAN W B, et al. Visual detection method for gasification process of micro satellite liquefied propellant[J]. Aerospace Control and Application, 2021, 47(4): 93-102.
[35]HULME I, KANTZAS A. Determination of bubble diameter and axial velocity for a polyethylene fluidized bed using X-ray fluoroscopy[J]. Powder Technology, 2004, 147(1/2/3): 20-33.
[36]GRAAS A B M, WAGNER E C, VAN LEEUWEN T, et al. X-ray tomography for fully-3D time-resolved reconstruction of bubbling fluidized beds[J]. Powder Technology, 2024, 434: 119269.
[37]蔡健荣, 梁小祥, 许骞, 等. 采用X射线三维重构技术检测厚皮柑橘的体积可食率[J]. 农业工程学报, 2024, 40(1): 293-300.
CAI J R, LIANG X X, XU Q, et al. Detecting volumetric edible rate of thick-skinned citrus using X-ray three-dimensional reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 293-300.
[38]LIU M Z, DI X G, LV T, et al. Towards to Human Intention: A few-shot open-set object detection for X-ray hazard inspection[J]. Neurocomputing, 2024, 577: 127388.
[39]MURAKAWA H, SHIMIZU T, ECKERT S. Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section[J]. Measurement, 2021, 182: 109654.
[40]TIAN S, TAN C, ZHANG Z X, et al. Size, distribution, and acoustic impedance quantization of bubbles and droplets using ultrasonic complex sound pressure[J]. IEEE Sensors Journal, 2024, 24(4): 4628-4641.
[41]赵天锋, 易艳辉, 夏朝阳. 输液气泡检测模块的应用[J]. 电子技术与软件工程, 2021(13): 84-85.
ZHAO T F, YI Y H, XIA C Y.Application of infusion bubble detection module[J]. Electronic Technology & Software Engineering, 2021(13): 84-85.
[42]TAN C, MURAI Y, LIU W L, et al. Ultrasonic Doppler technique for application to multiphase flows: A review[J]. International Journal of Multiphase Flow, 2021, 144: 103811.
[43]史风栋, 张宏伟, 苏焕鑫, 等. 超声多普勒流量信号的多声道互相关检测方法[J]. 传感技术学报, 2021, 34(10): 1334-1339.
SHI F D, ZHANG H W, SU H X, et al. Multi-channel cross-correlation detection method of ultrasonic Doppler flow signal[J]. Chinese Journal of Sensors and Actuators, 2021, 34(10): 1334-1339.
[44]MURAKAWA H, SUGIMOTO K, TAKENAKA N. Effects of the number of pulse repetitions and noise on the velocity data from the ultrasonic pulsed Doppler method with different algorithms[J]. Flow Measurement and Instrumentation, 2014, 40: 9-18.
[45]李吴昊. 基于超声多普勒技术的气液两相流流型识别与流速测量[D]. 景德镇: 景德镇陶瓷大学, 2022.
LI W H.Flow pattern identification and velocity measurement of gas-liquid two-phase flow based on ultrasonic Doppler technology[D]. Jingdezhen: Jingdezhen Ceramic University, 2022.
[46]顾明元. 多普勒超声血液气泡检测仪及其在潜水医学上的应用[J]. 解放军医学杂志, 1980,5(4): 245-247.
GU M Y.Doppler ultrasonic blood bubble detector and its application in diving medicine[J]. Medical Journal of Chinese PLA, 1980, 5(4): 245-247.
[47]TSOCHATZIDIS N A, GUIRAUD P, WILHELM A M, et al. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique[J]. Chemical Engineering Science, 2001, 56(5): 1831-1840.
[48]MURAKAWA H, KIKURA H, ARITOMI M. Application of ultrasonic Doppler method for bubbly flow measurement using two ultrasonic frequencies[J]. Experimental Thermal and Fluid Science, 2005, 29(7): 843-850.
[49]SAKAGAMI R, MURAKAWA H, SUGIMOTO K, et al. Effect of frequency analysis algorithms on velocity data using ultrasonic Doppler method[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. Hamamatsu, Japan:ASMEDC, 2011.
[50]MURAKAWA H, MURAMATSU E, SUGIMOTO K,et al. Development of ultrasonic flowmeter using pulsed doppler method with staggered trigger pulse[Z]. 2016.
[51]ROXAS R, EVANGELISTA M A, SOMBILLO J A, et al. Machine learning based flow regime identification using ultrasonic Doppler data and feature relevance determination[J]. Digital Chemical Engineering, 2022, 3: 100024.
[52]YOON D, HAYASHI T, PARK H J, et al. Ultrasound measurement of large bubbles rising in angled slug pipe flows[J]. Flow Measurement and Instrumentation, 2023, 91: 102357.
[53]DONG X, TAN C, DONG F. Water continuous oil-water flow velocity measurement based on continuous waves ultrasonic doppler method [C]//2015 IEEE International Instrumentation and Measurement Technology Conference(I2MTC)Proceedings. New York:IEEE, 2015.
[54]DONG X X, TAN C, YUAN Y, et al. Measuring oil-water two-phase flow velocity with continuous-wave ultrasound Doppler sensor and drift-flux model[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(5): 1098-1107.
[55]SHI X W. Oil-water two-phase flow velocity measurement based on ultrasonic Doppler spectrum correction[J]. Journal of Mechanical Engineering, 2017, 53(24): 77.
[56]TAN C, DONG X X, DONG F. Continuous wave ultrasonic Doppler modeling for oil-gas-water three-phase flow velocity measurement[J]. IEEE Sensors Journal, 2018, 18(9): 3703-3713.
[57]SHI X W, TAN C, DONG F, et al. Oil-gas-water three-phase flow characterization and velocity measurement based on time-frequency decomposition[J]. International Journal of Multiphase Flow, 2019, 111: 219-231.
[58]DONG F, GAO H, LIU W L, et al. Horizontal oil-water two-phase dispersed flow velocity profile study by ultrasonic Doppler method[J]. Experimental Thermal and Fluid Science, 2019, 102: 357-367.
[59]ZHAI L S, XU B, XIA H Y, et al. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method[J]. Chinese Journal of Chemical Engineering, 2023, 58: 323-340.
[60]MURAI Y, TASAKA Y, NAMBU Y, et al. Ultrasonic detection of moving interfaces in gas-liquid two-phase flow[J]. Flow Measurement and Instrumentation, 2010, 21(3): 356-366.
[61]HAUPTMANN P, LUCKLUM R, PÜTTMER A, et al. Ultrasonic sensors for process monitoring and chemical analysis: State-of-the-art and trends[J]. Sensors and Actuators A: Physical, 1998, 67(1/2/3): 32-48.
[62]HORVAT D, MOINA J, UN I, et al. Laser ultrasonics for bubbly flow detection[J]. Ultrasonics, 1998, 36(1/2/3/4/5): 565-568.
[63]FIGUEIREDO M M F, GONCALVES J L, NAKASHIMA A M V, et al. The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows[J]. Experimental Thermal and Fluid Science, 2016, 70: 29-50.
[64]DE MELO FREIRE FIGUEIREDO M, DE CASTRO TEIXEIRA CARVALHO F, FILETI A M F, et al. Flow pattern classification in water-air vertical flows using a single ultrasonic transducer[J]. Experimental Thermal and Fluid Science, 2020, 119: 110189.
[65]NA G, PARK J H, JO H, et al. Measuring void fraction in vertical air-water bubbly flow using echo intensity and visualization techniques[J]. Progress in Nuclear Energy, 2021, 136: 103731.
[66]CAROTENUTO R, IERO D, PEZZIMENTI F, et al. Ultrasonic ranging using frequency selective attenuation[C]//2021 IEEE International Ultrasonics Symposium(IUS). New York:IEEE, 2021.
[67]SOJAHROOD A J, LI Q, HAGHI H, et al. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations[J]. Ultrasonics Sonochemistry, 2023, 95: 106319.
[68]高永慧, 王冰. 在气液混相介质中测量声透射损失[J]. 大学物理, 2005,24(5): 39-41.
GAO Y H, WANG B. Measuring sound transmission loss in air-liquid mixture[J]. College Physics, 2005, 24(5): 39-41.
[69]王兴国, 常俊杰, 徐久军, 等. 超声波在薄膜介质中传播衰减的评价方法[J]. 中国表面工程, 2008, 21(5): 26-30.
WANG X G, CHANG J J, XU J J, et al. Evaluation of ultrasonic attenuation wave propagation through the thin layers[J]. China Surface Engineering, 2008, 21(5): 26-30.
[70]刘飞, 付建红, 张智, 等. 超声波在钻井液中传播衰减理论研究[J]. 石油钻采工艺, 2012, 34(1): 57-59.
LIU F, FU J H, ZHANG Z, et al. Research of ultrasonic attenuation theory in drilling fluid[J]. Oil Drilling & Production Technology, 2012, 34(1): 57-59.
[71]罗冰. 基于超声波的气液两相流流动特性研究[D]. 杭州: 中国计量学院,2015.
LUO B.Study on flow characteristics of gas-liquid two-phase flow based on ultrasonic wave[D]. Hangzhou: China University of Metrology, 2015.
[72]苏茜, 董峰. 油水两相流超声波衰减测试方法[J]. 中南大学学报(自然科学版), 2016,47(2): 647-653.
SU Q, DONG F. Ultrasound attenuation measurement in oil-water two-phase flow[J]. Journal of Central South University(Science and Technology), 2016, 47(2): 647-653.
[73]程明, 潘勤学, 肖定国, 等. 超声波在水中衰减的频率效应及其对脉冲回波的影响[J]. 计测技术, 2020, 40(1): 19-26.
CHENG M, PAN Q X, XIAO D G, et al. Frequency effect of ultrasonic wave attenuation in water and its influence on pulse echo[J]. Metrology & Measurement Technology, 2020, 40(1): 19-26.
[74]REN W K, JIN N D, ZHANG J C. Modelling of ultrasonic method for measuring gas holdup of oil-gas-water three phase flows[J]. Ultrasonics, 2022, 124: 106740.
[75]REN W K, JIN N D, ZHAI L S. A dual mode ultrasonic method for measuring gas volume fraction in two-phase slug flows[J]. IEEE Sensors Journal, 2023, 23(22): 28012-28020.
[76]YUAN J W, LI Z K, MA Q, et al. Noninvasive fluid bubble detection based on capacitive micromachined ultrasonic transducers[J]. Microsystems & Nanoengineering, 2023, 9: 20.
[77]WEN W, ZONG G H, BI S S. A bubble detection system for propellant filling pipeline[J]. Review of Scientific Instruments, 2014, 85(6): 065106.
[78]秦祚敏, 薛铮, 刘书睿, 等. 基于CMUT环形阵列的反射超声成像方法[J]. 微纳电子技术, 2024, 61(1): 143-149.
QIN Z M, XUE Z, LIU S R, et al. Reflection ultrasonic imaging method based on CMUT ring array[J]. Micronanoelectronic Technology, 2024, 61(1): 143-149.
[79]WU X Q, LI Y B, SU C, et al. Ultrasound computed tomography based on full waveform inversion with source directivity calibration[J]. Ultrasonics, 2023, 132: 107004.
[80]渠明, 邵志伟, 赵伟涛, 等. 灌浆套筒构件密实度超声波层析成像无损检测研究[J]. 工业建筑, 2021, 51(9): 207-215.
QU M, SHAO Z W, ZHAO W T, et al. Research on nondestructive testing of grouting sleeve members by ultrasonic tomography[J]. Industrial Construction, 2021, 51(9): 207-215.
[81]ZHENG J, PENG L H. A deep learning compensated back projection for image reconstruction of electrical capacitance tomography[J]. IEEE Sensors Journal, 2020, 20(9): 4879-4890.
[82]ANG M, TAN A C S, CHEUNG C M G, et al. Optical coherence tomography angiography: A review of current and future clinical applications[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256(2): 237-245.
[83]WANG H G, YANG W Q. Application of electrical capacitance tomography in pharmaceutical fluidised beds:A review[J]. Chemical Engineering Science, 2021, 231: 116236.
[84]NORTON S J, LINZER M. Ultrasonic reflectivity tomography: Reconstruction with circular transducer arrays[J]. Ultrasonic Imaging, 1979, 1(2): 154-184.
[85]AYOB N M N, RAHIMAN M H F, ZAKARIA Z, et al. Detection of small gas bubble using ultrasonic transmission-mode tomography system[C]//2010 IEEE Symposium on Industrial Electronics and Applications(ISIEA). New York:IEEE, 2010.
[86]LANGENER S, VOGT M, ERMERT H, et al. A real-time ultrasound process tomography system using a reflection-mode reconstruction technique[J]. Flow Measurement and Instrumentation, 2017, 53: 107-115.
[87]MURAKAWA H, MAEDA S, ECKERT S. Effects of a horizontal magnetic field on the cross-sectional distribution of gas bubbles chain rising in a gallium alloy[J]. International Journal of Multiphase Flow, 2024, 170: 104649.
[88]ANGERER M, WELSCH J, GERARDO C D, et al. Exploring the potentials of polymer-based CMUTs for 3D ultrasound computed tomography[C]//2023 IEEE International Ultrasonics Symposium(IUS). New York:IEEE, 2023.
[89]BECKER D, SCHMIDT R, LINDNER G, et al. Ultrasound measurement technique for validation of cryogenic flows[C]//EUROSENSORS 2018. Basel,Switzerland: MDPI, 2018.
[90]徐立军. 气/液两相流在线监测用超声层析成象技术及系统的研究[D]. 天津: 天津大学, 1996.
XU L J.Study on ultrasonic tomography technology and system for on-line monitoring of gas/liquid two-phase flow[D]. Tianjin: Tianjin University, 1996.
[91]XU C, TAN C, DONG F. Transmission-mode ultrasonic measurement for gas bubble detection[C]//2014 International Conference on Mechatronics and Control(ICMC).New York:IEEE, 2014.
[92]LI N, XU K. Simulation study on ultrasonic tomography in bubbly gas/liquid two-phase flow[C]//2017 IEEE International Conference on Imaging Systems and Techniques(IST). New York:IEEE, 2017.
[93]LI N, WANG L N, JIA J B, et al. A novel method for the image quality improvement of ultrasonic tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5000810.
[94]TAN C, LI X, LIU H, et al. An ultrasonic transmission/reflection tomography system for industrial multiphase flow imaging[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9539-9548.
[95]ZHAI L S, HUANG Y K, QIAO J W, et al. Measurement of gas holdup in slug region of horizontal oil-gas-water three-phase flow by a distributed ultrasonic sensor[J]. IEEE Sensors Journal, 2024, 24(3): 2547-2557.
相似文献/References:
[1]许 宏,袁仁学,孙 波,等.复合加强型推进剂包装容器设计与验证[J].火箭推进,2015,41(02):87.
XU Hong,YUAN Ren-xue,SUN Bo,et al.Design and verification of a reinforced integrated
vessel for liquid propellants[J].Journal of Rocket Propulsion,2015,41(06):87.
[2]王爱玲,梁兴国.液体推进剂火灾爆炸事故类型分析及其预防[J].火箭推进,2009,35(02):58.
Wang Ailing,Liang Xingguo.Analysis of fire and explosion accidents
of liquid propellants and the prevention[J].Journal of Rocket Propulsion,2009,35(06):58.
[3]符全军.液体推进剂的现状及未来发展趋势[J].火箭推进,2004,(01):1.
[4]李新其,刘祥萱,李红霞,等.液体推进剂贮运可靠性模糊故障树方法研究[J].火箭推进,2004,(05):31.
Li Xinqi,Liu Xiangxuan,Li Hongxia.Fuzzy Fault Tree Method of the Liquid Propellant Store and Transport Security Estimate and Forecast[J].Journal of Rocket Propulsion,2004,(06):31.
[5]陈军,丁博深,段燕.氢/氧火箭发动机试验自动紧急关机程序设计[J].火箭推进,2016,42(02):69.
CHEN Jun,DING Boshen,DUAN Yan.Design of automatic emergency cut-off program in LH2/LOX engine test[J].Journal of Rocket Propulsion,2016,42(06):69.
[6]王菊香,瞿 军,邢志娜,等.近红外光谱技术在推进剂质量检测中的应用[J].火箭推进,2018,44(02):82.
WANG Juxiang,QU Jun,XING Zhina,et al.Application of NIRS analysis technology in liquid propellant quality detection[J].Journal of Rocket Propulsion,2018,44(06):82.
[7]费腾,徐冉,赵鹏宇,等.离子型短点火延迟自燃液体推进剂研究进展[J].火箭推进,2024,50(05):33.[doi:10.3969/j.issn.1672-9374.2024.05.003]
FEI Teng,XU Ran,ZHAO Pengyu,et al.Research progress on hypergolic ionic liquid propellant with short ignition delay time[J].Journal of Rocket Propulsion,2024,50(06):33.[doi:10.3969/j.issn.1672-9374.2024.05.003]
备注/Memo
收稿日期:2024- 08- 14修回日期:2024- 09- 29
基金项目:国家重点研发计划(2022YFB3205400); 国家自然科学基金(52275570); 重庆市自然科学基础研究(cstc2021jcyj-msxmX0801); 常规液体火箭发动机预包装质量特性检测研究(JSJT-2022-203-B)
作者简介:谭鸿强(2001—),男,硕士研究生,研究领域为火箭推进剂夹气检测以及压电微机械超声换能器。