航天推进技术研究院主办
WANG Bo,CAI Guohui,WU Erjun,et al.Mode characteristic extraction of impinging jet based on proper orthogonal decomposition[J].Journal of Rocket Propulsion,2024,50(06):78-89.[doi:10.3969/j.issn.1672-9374.2024.06.006]
基于本征正交分解的撞击射流模态特征提取
- Title:
- Mode characteristic extraction of impinging jet based on proper orthogonal decomposition
- 文章编号:
- 1672-9374(2024)06-0078-12
- Keywords:
- impinging jet atomization; proper orthogonal decomposition; liquid film breakup; impact wave
- 分类号:
- V231.1
- 文献标志码:
- A
- 摘要:
- 基于两个方向的高速摄影实验,通过本征正交分解(proper orthogonal decomposition,POD)方法研究了撞击射流动态变化过程中的空间和时间特征。通过不同流速下实验图像分析阐明了撞击射流基本流动模式的特征变化。正视图像序列的模态分解结果解析了撞击波模式和撞击波-液膜破碎混合模式的空间特征,并且表明撞击波模式的单个模态能量和累计模态能量更高。侧视图像序列的模态分解结果阐明了侧视撞击波特征、液膜破碎特征和液膜上液滴断裂特征,对于撞击波模式,相对的一组高阶模态的时间系数具有反向变化的趋势。正视图像中波峰和波谷均被识别为波动峰值,导致正视图像模态特征频率是侧视图像对应模态特征频率的2倍。将基于奇异值分解的本征正交分解方法应用于不同工况下撞击射流的图像序列测试与分析,通过提取空间波动特征和频率特征,有助于优化液体火箭发动机雾化结构设计和运行参数。
- Abstract:
- Based on high-speed imaging experiments in two directions, the spatial and temporal characteristics of the dynamic changes during the impinging jet atomization are studied by means of the proper orthogonal decomposition method. The characteristic changes of the basic flow mode for the impinging jet are elucidated through the analysis of experimental images at different flow velocities. The modal decomposition results of the frontal image sequence are used to analyze the spatial characteristics between the impact wave mode and the mixed mode of impact wave-liquid film breakup. And the single mode energy and the cumulative mode energy of the impact wave mode are higher than the mixing mode. The mode decomposition results of the side view image sequence illustrate the characteristics of impact wave, liquid film breakup and droplet breakup from liquid film. For the impact wave mode, the relative time coefficients of a set of higher-order modes have a trend of reverse change. The wave peaks and troughs in the front image are identified as wave peaks, resulting in the modal characteristic frequency of the front image being twice the side view image. The proper orthogonal decomposition method based on singular value decomposition is applied to test and analyze the image sequence of impinging jet under different cases. By extracting the space wave characteristics and frequency characteristics, it is helpful to optimize the atomization structure design and operation parameters of liquid rocket engine.
参考文献/References:
[1] CHEN X D, YANG V. Recent advances in physical understanding and quantitative prediction of impinging-jet dynamics and atomization[J]. Chinese Journal of Aeronautics, 2019, 32(1): 45-57.
[2]YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28(1): 925-942.
[3]HEIDMANN M, PRIEM R, HUMPHREY J C. A study of sprays formed by two impinging jets[EB/OL]. https://www.semanticscholar.org/paper/A-study-of-sprays-formed-by-two-impinging-jets-Heidmann-Priem/ b2e802ce7b523396385f4ccd03a4c15398804594, 1957.
[4]DOMBROWSKI N, HOOPER P C. A study of the sprays formed by impinging jets in laminar and turbulent flow[J]. Journal of Fluid Mechanics, 1964, 18: 392-400.
[5]RYAN H M, ANDERSON W E, PAL S, et al. Atomization characteristics of impinging liquid jets[J]. Journal of Propulsion and Power, 1995, 11(1): 135-145.
[6]SANTORO R J, ANDERSON W E, RYAN H M. Impact wave-based model of impinging jet atomization[J]. Atomization and Sprays, 2006, 16(7): 791-806.
[7]CHEN X D, MA D J, YANG V. Mechanism study of impact wave in impinging jets atomization[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2012.
[8]DOMBROWSKI N, HOOPER P C. The effect of ambient density on drop formation in sprays[J]. Chemical Engineering Science, 1962, 17(4): 291-305.
[9]CHEN X D, YANG V. Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions[J]. Journal of Computational Physics, 2014, 269: 22-39.
[10]HIRT C W, NICHOLS B D. Volume of fluid(VOF)method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[11]JIN W, XIAO J, REN H X, et al. Three-dimensional simulation of impinging jet atomization of soft mist inhalers using the hybrid VOF-DPM model[J]. Powder Technology, 2022, 407: 117622.
[12]王凯, 唐亮, 雷凡培, 等. 液液针栓多喷注单元喷雾场数值模拟[J]. 火箭推进, 2023, 49(2): 15-26.
WANG K, TANG L, LEI F P, et al. Numerical simulation on spray field of liquid-liquid pintle multi-injector elements[J]. Journal of Rocket Propulsion, 2023, 49(2): 15-26.
[13]BREMOND N, VILLERMAUX E. Atomization by jet impact[J]. Journal of Fluid Mechanics, 2006, 549: 273.
[14]HAN Y, DURST F, ZEILMANN M. High-pressure-driven twin-jet sprays and their properties[J]. Atomization and Sprays, 2014, 24(5): 375-401.
[15]TAYLOR G. Formation of thin flat sheets of water[J]. Proceedings of the Royal Society of London Series A, 1960, 259(1296): 1-17.
[16]TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal, 2017, 55(12): 4013-4041.
[17] TAIRA K, HEMATI M S, BRUNTON S L, et al. Modal analysis of fluid flows: Applications and outlook[J]. AIAA Journal, 2020, 58(3): 998-1022.
[18]LEASK S B, MCDONELL V G, SAMUELSEN S. On the use of dynamic mode decomposition for liquid injection[J]. Atomization and Sprays, 2019, 29(11): 965-985.
[19]ARIENTI M, SOTERIOU M C. Time-resolved proper orthogonal decomposition of liquid jet dynamics[J]. Physics of Fluids, 2009, 21(11): 112104.
[20]CHEN H, HUNG D L S, XU M, et al. Analyzing the cycle-to-cycle variations of pulsing spray characteristics by means of the proper orthogonal decomposition[J]. Atomization and Sprays, 2013, 23(7): 623-641.
[21]DIGHE S, GADGIL H. Modal analysis of the liquid sheet breakup with and without acoustic forcing[J]. International Journal of Multiphase Flow, 2022, 156: 104226.
[22]KUMAR A, SAHU S. Large scale instabilities in coaxial air-water jets with annular air swirl[J]. Physics of Fluids, 2019, 31(12): 124103.
备注/Memo
收稿日期:2024- 01- 25修回日期:2024- 03- 07
基金项目:国家自然科学基金(U23B6009,12272050)
作者简介:王 博(1996—),男,博士,研究领域为射流雾化的实验与数值模拟。
通信作者:陈晓东(1982—),男,博士,副教授,研究领域为多相流动力学、航空宇航推进。