航天推进技术研究院主办
CHANG Ying,DU Yongqing,CHEN Hui,et al.Application of gold-plated grating in high temperature dynamic strain measurement for aerospace engines[J].Journal of Rocket Propulsion,2024,50(06):127-134.[doi:10.3969/j.issn.1672-9374.2024.06.011]
应用于航天发动机的镀金光纤光栅高温动应变测量技术
- Title:
- Application of gold-plated grating in high temperature dynamic strain measurement for aerospace engines
- 文章编号:
- 1672-9374(2024)06-0127-08
- Keywords:
- gold-plated fiber grating; aerospace engines; hot test; high-temperature dynamic strain; temperature compensation
- 分类号:
- V416.6
- 文献标志码:
- A
- 摘要:
- 在航天发动机的地面热试车或高空模拟试验中,通过准确测量高温管路的动应变参数,可以有效掌握结构疲劳和裂纹情况,从而提高发动机载荷能力分析和剩余寿命预测能力,这对于掌握发动机的工作状态具有重要的工程意义。西安航天动力研究所针对该动应变测量需求,提出采用镀金涂层的飞秒激光刻写光纤光栅(FBG)进行高温动应变的测量。通过高温温度特性试验,开展了温度补偿技术研究,明确了高温应变温度补偿方案; 在高温等强度梁上对高温应变测量准确度和温度补偿方案的可行性进行了验证。结果表明,经过高温温度补偿以后应变测量误差在±5×10-5范围内,可以满足航天液体发动机高温动应变测量准确度的要求。该光纤高温应变技术目前在本研究所设计的多个型号发动机热试车中高温动应变的测量中获得了良好应用。该技术具有测量成本低、测量准确性高等特点,可以在300~800 ℃范围内实现管路壁面动应变的准确测量。
- Abstract:
- In the ground hot test or high-altitude simulation test of aerospace engines, it is necessary to accurately measure the dynamic strain parameters of high-temperature pipelines to determine the structural dynamic strength and mechanical properties of key high-temperature pipelines, which is of great significance for studying the performance and safety characteristics of engines. According to the measurement requirements of high-temperature dynamic strain, Xi'an Aerospace Propulsion Institute proposes to use femtosecond laser engraved fiber Bragg gratings coated with gold for high-temperature dynamic strain measurement. Through high-temperature characteristic tests, temperature compensation technology research was carried out, and a high-temperature strain temperature compensation scheme was clarified. The accuracy of high-temperature strain measurement and the feasibility of temperature compensation scheme were verified on high-temperature equal strength beam. The results show that the strain measurement error is within the range of ±5×10-5 after high-temperature temperature compensation, which can meet the accuracy requirements of high-temperature dynamic strain measurement for aerospace liquid engines. The high-temperature strain technology with fiber has been well applied in the measurement of high-temperature dynamic strain during hot testing of multiple engine models designed by our research institute. It has the characteristics of low measurement cost and high measurement accuracy, and can accurately measure the high-temperature dynamic strain of pipeline working wall temperature within the range of 300-800 ℃.
参考文献/References:
[1] 王凯, 王东方, 刘友强, 等. 变形高温合金在液体火箭发动机中的应用进展及展望[J]. 火箭推进, 2024, 50(1): 57-66.
WANG K, WANG D F, LIU Y Q, et al. Application and prospect of wrought superalloy in liquid rocket engine[J]. Journal of Rocket Propulsion, 2024, 50(1): 57-66.
[2]赵万明. 液体火箭发动机地面试验中关键参数测量方案设计[J]. 火箭推进, 2002, 28(1): 27-32.
ZHAO W M.Design of key parameters measurement scheme in liquid rocket engine ground test[J]. Journal of Rocket Propulsion, 2002, 28(1): 27-32.
[3]柴葳, 郝庆瑞, 宝剑光. 光纤温度/应变复合传感器及其在800 ℃高温下的应用[J]. 航空科学技术, 2020, 31(2): 66-71.
CHAI W, HAO Q R, BAO J G. Integrated optical fibre temperature/strain sensor subjected to the 800 ℃ conditions[J]. Aeronautical Science & Technology, 2020, 31(2): 66-71.
[4]李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文), 2022, 15(4): 609-624.
LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624.
[5]王福川, 刘畅. 高温光纤传感器在热结构温度测试中的应用[J]. 自动化应用, 2023(9): 172-174.
WANG F C, LIU C. Application of high temperature optical fiber sensor in temperature measurement of thermal structure[J]. Automation Application, 2023(9): 172-174.
[6]孟松鹤, 杜翀, 解维华, 等. 高温光纤传感器在热结构温度和应变测试中的应用[J]. 固体火箭技术, 2013, 36(5): 701-705.
MENG S H, DU C, XIE W H, et al. Application of high-temperature optical fiber sensor in temperature and strain testing of hot structure[J]. Journal of Solid Rocket Technology, 2013, 36(5): 701-705.
[7]吴家骥.基于光纤F-P传感器高温应变测量技术研究[D].西安:西北工业大学,2021.
WU J J.Research on high temperature strain measurement technology based on fiber optic F-P sensor [D]. Xi'an: Northwest Polytechnical University, 2021.
[8]田琴. 光纤高温应变双参量同时精确测量传感器关键技术研究[D]. 西安: 西北大学, 2020.
TIAN Q. Research on key technologies of optical fiber dual-parameter simultaneous accurate measurement sensor for high temperature strain[D]. Xi'an: Northwest University, 2020.
[9]杨杭洲, 刘鑫, 南朋玉, 等. 光纤高温应变传感器研究进展(特邀)[J]. 光子学报, 2022, 51(10): 1006002.
YANG H Z, LIU X, NAN P Y, et al. Progress in research of optical fiber high temperature and strain sensor(invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006002.
[10]LI G Y, GUAN B O. The strain response of chemical composition gratings at high temperatures[J]. Measurement Science and Technology, 2009, 20(2): 025204.
[11]张兴, 王俊杰, 彭伟华. 内嵌式微腔光纤法布里-珀罗应变传感器的研制[J]. 武汉理工大学学报, 2016, 38(1): 80-83.
ZHANG X, WANG J J, PENG W H. Research on embedded micro cavity optical fiber fabry-perot strain sensor[J]. Journal of Wuhan University of Technology, 2016, 38(1): 80-83.
[12]刘繄, 李志强, 谭跃刚, 等. 光纤光栅高温应变测量及工作温区调控方法[J]. 压电与声光, 2023, 45(4): 579-583.
LIU Y, LI Z Q, TAN Y G, et al. High temperature strain measurement and working temperature zone regulation method of fiber Bragg grating[J]. Piezoelectrics & Acoustooptics, 2023, 45(4): 579-583.
[13]杨润涛. 基于光纤传感的高超声速飞行器表面温度、应变及压力监测技术研究[D]. 合肥: 合肥工业大学, 2020.
YANG R T.Research on surface temperature, strain and pressure monitoring technology of hypersonic vehicle based on optical fiber sensing[D]. Hefei: Hefei University of Technology, 2020.
[14]江毅, 贾景善, 付雷, 等. 外腔式光纤Fabry-Perot干涉型高温应变传感器[J]. 光学技术, 2017, 43(5): 423-426.
JIANG Y, JIA J S, FU L, et al. A high-temperature strain sensor based on extrinsic Fabry-Perot interferometer[J]. Optical Technique, 2017, 43(5): 423-426.
[15]丁旭东, 张钰民, 宋言明, 等. 纯石英芯光纤光栅高温应变响应特性[J]. 中国激光, 2017, 44(11): 1106003.
DING X D, ZHANG Y M, SONG Y M, et al. Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain[J]. Chinese Journal of Lasers, 2017, 44(11): 1106003.
[16]LAAROSSI I, ROLDÁN-VARONA P, QUINTELA-INCERA M A, et al. Ultrahigh temperature and strain hybrid integrated sensor system based on Raman and femtosecond FBG inscription in a multimode gold-coated fiber[J]. Optics Express, 2019, 27(26): 37122.
[17]丁宝艳, 赵强, 王相飞, 等. 飞秒激光制备光纤布拉格光栅研究进展[J]. 光通信研究, 2022(3): 31-38.
DING B Y, ZHAO Q, WANG X F, et al. Review of fiber Bragg grating fabricated by femtosecond laser processing[J]. Study on Optical Communications, 2022(3): 31-38.
[18]吕瑞东, 陈涛, 范春松, 等. 飞秒激光制备光纤Bragg光栅在光纤激光器中的应用[J]. 激光与光电子学进展, 2020, 57(11): 111426.
LYU R D, CHEN T, FAN C S, et al. Application of fiber lasers based on femtosecond laser inscribed fiber Bragg gratings[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111426.
[19]ECKE W, LATKA I, WILLSCH R, et al. Fibre optic sensor network for spacecraft health monitoring[J]. Measurement Science and Technology, 2001, 12(7): 974-980.
[20]BURGMEIER J, SCHIPPERS W, EMDE N, et al. Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines[J]. Applied Optics, 2011, 50(13): 1868-1872.
[21]LIU N L, LIU S H, LU P X. A femtosecond-laser-induced fiber Bragg grating with supermode resonances for sensing applications[J]. Chinese Physics Letters, 2014, 31(9): 094204.
[22]廖常锐, 何俊, 王义平. 飞秒激光制备光纤布拉格光栅高温传感器研究[J]. 光学学报, 2018, 38(3): 123-131.
LIAO C R, HE J, WANG Y P. Study on high temperature sensors based on fiber Bragg gratings fabricated by femtosecond laser[J]. Acta Optica Sinica, 2018, 38(3): 123-131.
[23]YIN S Z. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain[J]. Chinese Optics Letters, 2009, 7(8): 675-678.
[24]陈梓泳, 何俊, 徐锡镇, 等. 飞秒激光逐点法制备光纤布拉格光栅高温传感器阵列[J]. 光学学报, 2021, 41(13): 15-23.
CHEN Z Y, HE J, XU X Z, et al.Fabrication of fiber Bragg grating high temperature sensor array by femtosecond laser point-by-point method[J]. Acta Optica Sinica, 2021, 41(13): 15-23.
[25]曹后俊, 司金海, 陈涛, 等. 飞秒激光制备异质光纤光栅的温度应变双参数传感器[J]. 中国激光, 2018, 45(7): 0702009.
CAO H J, SI J H, CHEN T, et al. Temperature and strain dual-parameter heterogeneous fiber Bragg grating sensor made by femtosecond laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0702009.
备注/Memo
收稿日期:2024- 06- 02修回日期:2024- 10- 29
基金项目:国家装备预研基金(6140923020303)
作者简介:常 莹(1983—),女,博士,研究员,研究领域为先进测试技术,光纤传感技术。