航天推进技术研究院主办
HUANG Xinlei,LEI Zheng,ZHAO Benyong,et al.X-ray flexible detection technology for small-diameter pipe welds and its application[J].Journal of Rocket Propulsion,2024,50(06):135-142.[doi:10.3969/j.issn.1672-9374.2024.06.012]
小直径导管焊缝X射线柔性检测技术与应用
- Title:
- X-ray flexible detection technology for small-diameter pipe welds and its application
- 文章编号:
- 1672-9374(2024)06-0135-08
- Keywords:
- small-diameter pipe; weld; X-ray; automatic detection; digital imaging; rocket engine
- 分类号:
- TG115.28
- 文献标志码:
- A
- 摘要:
- 针对液体火箭发动机小直径导管空间异形结构特点,自主研制了导管焊缝柔性检测系统,攻克了复杂结构导管的视觉识别难题,实现了不少于500种发动机导管的自动化检测应用,解决了导管产品长期以来存在的透照布置困难的问题。检测系统可通过视觉信号通信对各类导管产品进行自动识别、标定及坐标转换,并可根据不同导管的特征及规格自适应切换抓取夹具和检测参数,结合机器人运动路径规划与透照姿态编程控制,使检测一致性达到100%。利用检测系统对导管焊缝开展X射线数字成像检测工艺研究,获得了良好的图像分辨率与检测灵敏度,图像质量优于标准要求。与X射线胶片照相方法相比,检测系统的应用使单根导管检测时间缩短至90 s,人员劳动强度大幅降低,检测效率提升5倍以上。
- Abstract:
- Aiming at the characteristics of spatial irregular structures for small-diameter pipe in liquid rocket engines, a flexible X-ray detection system for pipe weld was developed independently, which overcame the problem of visual recognition of complex structures, achieved automatic detection of over 500 types of engine pipes and solved the long-standing problem of difficult radiographic arrangement of pipes. The detection system can recognize, calibrate, and coordinate various pipe products automatically, and switch the gripping fixture and detection parameters adaptively according to the characteristics and specifications of different pipes. By combining robot path planning with radiographic pose programming control, the detection consistency reaches 100%. Some work was carried out to study the digital radiographic testing process by using this detection system. Good image resolution and detection sensitivity were obtained. The image quality is better than the standard requirements. Compared to the X-ray film photography, the detection time of a single pipe is shortened to 90 s, personnel labor intensity is reduced significantly, and the efficiency is increased by more than 5 times.
参考文献/References:
[1] 同立军. 液体火箭发动机制造工艺技术[M]. 北京: 中国宇航出版社, 2021.
TONG L J. Manufacturing process technology of liquid rocket engine[M]. Beijing: China Aerospace Publishing House,2021.
[2]蔡国飙. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社, 2011.
CAI G B. Design of liquid rocket engine[M]. Beijing: Beihang University Press, 2011.
[3]何志勇, 张志峰, 宋少伟. 瞬变流速作用下姿控发动机燃料管路的非线性振动特性分析[J]. 火箭推进, 2021, 47(1): 55-61.
HE Z Y, ZHANG Z F, SONG S W. Effect of transient for velocity on nonlinear vibration characteristics of fuel pipe in attitude control engine[J]. Journal of Rocket Propulsion, 2021, 47(1): 55-61.
[4]岳婷, 李万鹏, 党琰. 数字化制造技术在液体火箭发动机导管定制化加工中的应用[J]. 火箭推进, 2022, 48(5): 93-100.
YUE T, LI W P, DANG Y. Application of digital manufacturing technology in customized processing of liquid rocket engine pipeline[J]. Journal of Rocket Propulsion, 2022, 48(5): 93-100.
[5]纪晖, 范义, 孙林辉, 等. DR与传统胶片技术在核电检测中的能效对比[J]. 无损检测, 2021, 43(3): 85-87.
JI H, FAN Y, SUN L H, et al. The comparison of the energy efficiency for DR and traditional film technology in nuclear power plant[J]. Nondestructive Testing, 2021, 43(3): 85-87.
[6]吕新昱, 李维, 周广言, 等. 油气管道环焊缝数字射线检测与胶片法射线检测技术对比分析[J]. 无损检测, 2019, 41(2):48-51.
LYU X Y, LI W, ZHOU G Y, et al. Contrast and analysis of DR/RT-F detection technology on oil and gas pipeline girth welding[J]. Nondestructive Testing Technologying, 2019, 41(2):48-51.
[7]肖君武, 邱国云, 范瑞峰, 等. 传统胶片与CR技术在高铁制造检测中的影响及对比测试研究[J]. 粘接, 2023, 50(11): 10-12.
XIAO J W, QIU G Y, FAN R F, et al. The impact and comparative test study of traditional film and CR technology in high-speed rail manufacturing inspection[J]. Adhesion, 2023, 50(11): 10-12.
[8]刘然清, 王朋坤, 宋雪原. 工业X射线胶片暗室处理技术[J]. 信息记录材料, 2022, 23(5): 5-8.
LIU R Q, WANG P K, SONG X Y. Darkroom processing technology for industrial X-ray film[J]. Information Recording Materials, 2022, 23(5): 5-8.
[9]谭永华, 许艺峰, 张权明, 等. 液体动力制造过程检测技术应用与挑战[J]. 中国航天, 2018(10): 7-13.
TAN Y H, XU Y F, ZHANG Q M, et al. Applications and challenges of manufacturing process measurement technology in the field of liquid rocket power[J]. Aerospace China, 2018(10): 7-13.
[10]FENTER P, CATALANO J G, PARK C, et al. On the use of CCD area detectors for high-resolution specular X-ray reflectivity[J]. Journal of Synchrotron Radiation, 2006, 13(4): 293-303.
[11]YAN F, HAMIT M, KUTLUK A, et al. Feature extraction and analysis on X-ray image of Xinjiang Kazak Esophageal cancer by using gray-level histograms[C]//2013 IEEE International Conference on Medical Imaging Physics and Engineering. Shenyang, China:[s.n.],2013.
[12]张弘毅, 李运祥, 曹斌, 等. X射线成像技术的研究进展[J]. 中国科学(生命科学), 2020, 50(11): 1202-1212.
ZHANG H Y, LI Y X, CAO B, et al. Advances in X-ray imaging technology[J]. Scientia Sinica(Vitae), 2020, 50(11): 1202-1212.
[13]梁世蒙, 高海良, 赵广波, 等. 数字化射线检测技术在船舶领域的应用[J]. 无损检测, 2020, 42(2): 25-31.
LIANG S M, GAO H L, ZHAO G B, et al. Application of digital ray detection technology in ship field[J]. Nondestructive Testing, 2020, 42(2): 25-31.
[14]任文坚, 刘贞, 张腾, 等. 推力室钎焊身部X射线数字成像检测技术[J]. 火箭推进, 2020, 46(3): 90-95.
REN W J, LIU Z, ZHANG T, et al. X-ray digital imaging detection technology for brazed body of thrust chamber[J]. Journal of Rocket Propulsion, 2020, 46(3): 90-95.
[15]单黎波, 金作花, 贺云龙, 等. 液体火箭发动机钎焊、扩散焊质量检测技术研究[J]. 火箭推进, 2009, 35(6): 47-51.
SHAN L B, JIN Z H, HE Y L, et al. Testing techniques of brazing and diffusion welding quality of liquid rocket engine[J]. Journal of Rocket Propulsion, 2009, 35(6): 47-51.
[16]王东, 代淮北, 李付良, 等. 核电小径管对接焊缝的数字射线成像检测[J]. 无损检测, 2021, 43(7): 27-30.
WANG D, DAI H B, LI F L, et al. Digital radiography testing of butt weld of small-diameter pipe in nuclear power[J]. Nondestructive Testing, 2021, 43(7): 27-30.
[17]杨扬, 虞永杰. X射线实时成像检测最佳放大倍数的研究[J]. 机械, 2013, 40(10): 1-6.
YANG Y, YU Y J. Research on the best magnification times of X-ray real time radiography[J]. Machinery, 2013, 40(10): 1-6.
[18]胡文刚, 陆云鹏, 郭世雄, 等. 基于DR数字射线成像技术的铝合金焊缝缺陷检测[J]. 焊接, 2021(2): 46-51.
HU W G, LU Y P, GUO S X, et al. Weld defect detection of aluminum alloy based on digital radiography[J]. Welding & Joining, 2021(2): 46-51.
[19]赵付宝, 孙良文, 汤振鹤, 等. 复合材料构件的X射线数字成像检测[J]. 中国测试, 2021, 47(Sup.2): 92-95.
ZHAO F B, SUN L W, TANG Z H, et al. X-ray digital imaging detection of composite components[J]. China Measurement & Test, 2021, 47(Sup.2): 92-95.
[20]中华人民共和国国家质量监督检验检疫总局. 无损检测X射线数字成像检测系统特性: GB/T 35394—2017[S]. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Characteristics of non-destructive testing X-ray digital imaging detection system: GB/T 35394-2017[S]. Beijing: Standards Press of China,2017.
备注/Memo
收稿日期:2023- 12- 06修回日期:2024- 03- 12
基金项目:航天科技集团第六研究院共性基础研究项目(2022Tm GJ5001-M)
作者简介:黄欣磊(1990—),男,硕士,工程师,研究领域为无损检测技术。
通信作者:闫明巍(1974—),男,高级工程师,研究领域为无损检测技术。