航天推进技术研究院主办
TANG Caijie,GAO Hongchun,WANG Xuefeng,et al.Fiber Bragg grating spectral distortion suppression in low-temperature pipeline's dynamic strain measurement[J].Journal of Rocket Propulsion,2024,50(06):154-160.[doi:10.3969/j.issn.1672-9374.2024.06.014]
低温管路动应变光纤光栅测量的光谱畸变抑制
- Title:
- Fiber Bragg grating spectral distortion suppression in low-temperature pipeline's dynamic strain measurement
- 文章编号:
- 1672-9374(2024)06-0154-07
- Keywords:
- dynamic strain; fiber Bragg grating; spectral distortion suppression; low temperature; pipeline
- 分类号:
- O433.1; TN253
- 文献标志码:
- A
- 摘要:
- 动应变是分析和治理火箭发动机管路振动问题的重要测量参数。针对低温管路动应变光纤光栅测量面临的光谱畸变问题,开展了抑制光纤光栅应变传感器光谱畸变的方法研究。选择了3种适用于直径≤30 mm的小管路应变测量的光纤光栅应变传感器封装和安装方法并开展了试验验证。第一种方法是拉伸光纤光栅并将光纤光栅及其两侧光纤整体粘接到管路表面; 第二种方法是拉伸光纤光栅并将光纤光栅之外的两侧光纤粘接到管路表面; 第三种方法是光纤光栅套毛细管拉伸并将毛细管及两侧光纤整体粘接到管路表面。在液氮试验中,套毛细管的4只光纤光栅未发生谱峰分裂,其中3只光纤光栅的反射谱半峰全宽相对变化≤5%、谱峰强度相对变化≤6%,光谱畸变得到了有效抑制; 光纤光栅应变测量值与通过管件热膨胀施加的应变吻合。结果表明,光纤光栅套毛细管拉伸整体粘接方法可用于火箭发动机低温小直径管路动应变测量。
- Abstract:
- Dynamic strain is an important measuring parameter for analyzing and treating pipeline vibration problems in rocket engines. Methods for suppressing fiber Bragg grating(FBG)spectral distortion in low-temperature pipeline's dynamic strain measurement were studied. Three methods of packaging and installing FBG strain sensor, which are suitable for small pipeline with a diameter of no more than 30 mm, have been picked up and evaluated experimentally. The first method is bonding the whole stretched FBG and its both sides to the pipeline surface. The second method is bonding the both sides of stretched FBG to the pipeline surface. The third method is bonding the capillary tube covering stretched FBG and both sides of the FBG to the pipeline surface. In the liquid nitrogen test, four FBGs covered with capillary tubes did not undergo spectral peak splitting. Among them, reflection spectra of three FBGs had no more than 5% relative changes in the full width at half maxim(FWHM)and no more than 6% relative changes in peak intensity, which shows that spectral distortion was suppressed successfully. Measured result of FBG covered with capillary tube is consistent with the strain induced by thermal expansion of pipelines. The method bonding the capillary tube covering stretched FBG and both sides of the FBG is prospected to be applied to the dynamic strain measurement for rocket engines with small-diameter and low-temperature pipelines.
参考文献/References:
[1] 高轩, 陈洪恩, 王猛, 等. 基于有限测点的复杂管路全局振动预示方法[J]. 火箭推进, 2022, 48(2): 45-55.
GAO X, CHEN H E, WANG M, et al. A global vibration evaluation method based on information of limited measuring points for a complex pipeline[J]. Journal of Rocket Propulsion, 2022, 48(2): 45-55.
[2]杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[3]陈海峰, 刘英元. 液体火箭发动机试验动应变参数测量工艺技术[J]. 火箭推进, 2009, 35(6): 52-56.
CHEN H F, LIU Y Y. Dynamic strain parameter measuring technique in liquid rocket engine tests[J]. Journal of Rocket Propulsion, 2009, 35(6): 52-56.
[4]MCKENZIE I, IBRAHIM S, HADDAD E, et al. Fiber optic sensing in spacecraft engineering: An historical perspective from the European space agency[J]. Frontiers in Physics, 2021, 9: 719441.
[5]唐才杰, 王学锋, 卞贺明, 等. 基于可调谐激光器的光纤光栅高速解调的时延误差补偿方法[J]. 光电子·激光, 2023, 34(2): 174-179.
TANG C J, WANG X F, BIAN H M, et al. Optical delay error compensation method for FBG high-speed interrogator based on tunable laser[J]. Journal of Optoelectronics·Laser, 2023, 34(2): 174-179.
[6] 阚宝玺, 杨超, 王学锋, 等. 基于光纤光栅传感器的复合材料气瓶应变检测[J]. 宇航材料工艺, 2023,53(2): 111-116.
KAN B X, YANG C, WANG X F, et al. Strain testing of composite pressure vessels based on fiber Bragg grating sensors[J]. Aerospace Materials & Technology, 2023, 53(2): 111-116.
[7]GAO H C, WANG X F, TANG C J, et al. Research on fiber Bragg grating sensors for strain monitoring at cryogenic temperatures[C]//Global Intelligent Industry Conference 2020. Guangzhou, China: SPIE, 2021.
[8]CHIUCHIOLO A, BAJAS H, BAJKO M, et al. Strain measurements with fiber Bragg grating sensors in the short models of the HiLumi LHC low-beta quadrupole magnet MQXF[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 4007805.
[9]冯翔宇, 曾捷, 李钰, 等. 低温环境光纤光栅反射光谱感应特性研究[J]. 上海航天, 2017, 34(1): 27-31.
FENG X Y, ZENG J, LI Y, et al. Study on reflection spectrum characteristic of fiber Bragg grating under low temperature environment[J]. Aerospace Shanghai, 2017, 34(1): 27-31.
[10]王进. 特殊环境下光纤光栅传感技术与高速解调方法研究[D]. 天津: 天津大学, 2019.
WANG J.Research on fiber grating sensing technology and high-speed demodulation method in special environment[D]. Tianjin: Tianjin University, 2019.
[11]FERGUSON S K. Fiber optic strain gage and carrier: US7856888[P]. 2010-12-28.
[12]LI L T, LYU D J, YANG M H, et al. Strain characteristics of the silica-based fiber Bragg gratings for 30-273 K[J]. Cryogenics, 2018, 92: 93-97.
[13]黄国君, 邵进益, 王秋良, 等. 液氮温度光纤Bragg光栅的应变传感特性[J]. 光电子·激光, 2007, 18(7): 773-775.
HUANG G J, SHAO J Y, WANG Q L, et al. Strain response of FBG at liquid nitrogen temperature[J]. Journal of Optoelectronics·Laser, 2007, 18(7): 773-775.
[14]唐才杰, 崔留住, 王学锋. 一种光纤光栅应变传感器及其安装方法: CN103673914A[P]. 2014-03-26.
TANG C J,CUI L Z,WANG X F. A fiber optic grating strain sensor and its installation method: CN1036739-14A[P]. 2014-03-26.
[15]阚宝玺. 光纤光栅传感器植入复合材料结构的方法及检测研究[D]. 北京: 北京航空航天大学, 2023.
KAN B X.Research on the method and detection of fiber bragg grating sensor implanted into composite material structures[D]. Beijing:Beihang University, 2023.
[16]江毅. 高级光纤传感技术[M]. 北京: 科学出版社, 2009.
JIANG Y. Advanced fiber optic sensing technology[M]. Beijing:Science Press, 2009.
[17]TANG K, SHA L, LI Y J, et al. Measurement of thermal expansion at low temperatures using the strain gage method[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(5): 323-330.
[18]王明超, 唐才杰, 王学锋, 等. 一种DBR可调谐激光器的波长在线校准装置及方法: CN108123366B[P]. 2019-05-24.
WANG M C,TANG C J,WANG X F,et al. A wavelength online calibration device and method for DBR tunable laser: CN108123366B[P]. 2019-05-24.
[19]LIANG H G, WANG X F, TANG C J, et al. Research on high-speed dynamic calibration technology of tunable laser[C]//AOPC 2019: Optical Fiber Sensors and Communication. Beijing, China:SPIE, 2019.
[20]王巧妮, 杨远洪. 自适应的光纤布拉格光栅图像寻峰算法[J]. 导航与控制, 2016,15(1): 70-74.
WANG Q N, YANG Y H. Adaptive peak detection algorithm for fiber Bragg grating spectrum based on image processing[J]. Navigation and Control, 2016, 15(1): 70-74.
相似文献/References:
[1]陈海峰,刘英元.液体火箭发动机试验动应变参数测量工艺技术[J].火箭推进,2009,35(06):52.
Chen Haifeng,Liu Yingyuan.Dynamic strain parameter measuring technique in liquid rocket engine tests[J].Journal of Rocket Propulsion,2009,35(06):52.
备注/Memo
收稿日期:2023- 12- 28修回日期:2024- 09- 11
作者简介:唐才杰(1982—),男,博士,研究员,研究领域为光纤传感及测量技术。