PDF下载 分享
[1]杨振宇,赵 杨,李光熙,等.1 mN射频离子推力器参数与性能分析[J].火箭推进,2020,46(03):75-82.
 YANG Zhenyu,ZHAO Yang,LI Guangxi,et al.Parameters and performance analysis of 1 mN RF ion thruster[J].Journal of Rocket Propulsion,2020,46(03):75-82.
点击复制

1 mN射频离子推力器参数与性能分析

参考文献/References:

[1] 胡竟,蒋成保,张天平,等.星载永磁霍尔推力器磁场分实验研究[J/OL].推进技术. https://doi.org/10.13675/j.cnki.tjjs.190332.
[2] 康小录, 杭观荣, 朱智春. 霍尔电推进技术的发展与应用[J]. 火箭推进, 2017, 43(1): 8-17.
KANG X L, HANG G R, ZHU Z C. Development and application of Hall electric propulsion technology[J]. Journal of Rocket Propulsion, 2017, 43(1): 8-17.
[3] 赵以德, 张天平, 郑茂繁, 等. 高推力密度离子推力器研究[J]. 真空, 2017, 54(1): 14-16.
[4] 任亚军, 王小永. 高性能电推进系统的发展及在GEO卫星平台中的应用[J]. 真空与低温, 2018, 24(1): 60-65.
[5] 吴辰宸, 孙新锋, 顾左, 等. 射频离子推力器放电与引出特性调节规律仿真与试验研究[J]. 推进技术, 2019, 40(1): 232-240.
[6] 李兴达,李建鹏,张兴民,等.射频离子推力器热特性仿真分析[J/OL].推进技术. https://doi.org/10.13675/j.cnki.tjjs.190209.
[7] 贺建武, 马隆飞, 薛森文, 等. 小型感性耦合射频等离子体中和器的实验研究[J]. 推进技术, 2018, 39(7): 1673-1680.
[8] DOBKEVICIUS M, FEILI D. A coupled performance and thermal model for radio-frequency gridded ion thrusters[J]. The European Physical Journal D, 2016, 70(11): 227.
[9] KANEV S V, KHARTOV S A, VLADISLAV V. Analytical model of radio-frequency ion thruster[C]//6th Russian-German Conference on Electric Propulsion and Their Application. Moscow:[s.n.],2007.
[10] WUC C, SUN X F, GU Z, et al. Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 045502.
[11] NAKAGAWA K, TAKAO Y. Optimization of plasma production with impedance analysis for a micro RF ion thruster[J]. Trans. JSASS Aerospace Tech,2016,14(30):63-68.
[12] 郭德洲, 顾左, 陈娟娟, 等. 离子推力器变孔径栅极方案数值研究[J]. 推进技术, 2018, 39(9): 2136-2143.
[13] HIRAMOTO K, TAKAO Y. Investigation of ion beam extraction mechanism for higher thrust density of ion thrusters[J]. Trans JSASS Aerospace Tech,2016,14(30):57-62.
[14] VOLKMAR C,NEUMANN A,GEILE C,et al.Real-time in situ determination of inductively coupled power and numerical prediction of power distribution in RF ion thrusters[C]//The 35th International Electric Propulsion Conference.USA:[s.n.],2007.
[15] KRALKINA E A, VAVILIN K V, ZADIRIEV I I, et al. Optimization of discharge parameters in an inductive RF ion thruster prototype[J]. Vacuum, 2019, 167: 136-144.
[16] MASHEROV P E, RIABY V A, GODYAK V A. Integral electrical characteristics and local plasma parameters of a RF ion thruster[J]. Review of Scientific Instruments, 2016, 87(2): 02B926.
[17] LOKAL U,TURAN N, CELIK M. Design improvements and experimental measurements of BURFIT-80 RF ion thruster[C]//53nd AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta:[s.n.],2017.
[18] TSAY M, FRONGILLO J, MODEL J, et al. Maturation of iodine-fueled BIT-3 RF ion thruster and RF neutralizer[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City:AIAA,2016.
[19] TSAY M, FRONGILO J, MODEL J. Neutralization demo and thrust stand measurement for BIT-3 RF ion thruster[C]//53nd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta:[s.n.],2017.
[20] GUDMUNDSSON J T, LIEBERMAN M A. Magnetic induction and plasma impedance in a cylindrical inductive discharge[J]. Plasma Sources Science and Technology, 1997, 6(4): 540-550.

相似文献/References:

[1]杨立博,石波,鲁海峰,等.射频离子推力器壳体结构点阵材料拓扑优化[J].火箭推进,2023,49(04):51.
 YANG Libo,SHI Bo,LU Haifeng,et al.Topological optimization of lattice material for shell structure of RF ion thruster[J].Journal of Rocket Propulsion,2023,49(03):51.

备注/Memo

收稿日期:2019-09-03; 修回日期:2019-10-23
基金项目:国家自然科学基金(11475131)
作者简介:杨振宇(1994—),男,硕士,研究领域为空间电推进技术

更新日期/Last Update: 2020-06-25