PDF下载 分享
[1]苏鹏程,赵长安,王佩艳,等.激光增材制造镍基高温合金的高温变形行为与本构模型[J].火箭推进,2024,50(01):135-146.[doi:10.3969/j.issn.1672-9374.2024.01.013]
 SU Pengcheng,ZHAO Chang'an,WANG Peiyan,et al.High temperature deformation behavior and constitutive model of laser additive manufactured Nickel-based superalloy[J].Journal of Rocket Propulsion,2024,50(01):135-146.[doi:10.3969/j.issn.1672-9374.2024.01.013]
点击复制

激光增材制造镍基高温合金的高温变形行为与本构模型

参考文献/References:

[1] 袁战伟,常逢春,马瑞,等.增材制造镍基高温合金研究进展[J]. 材料导报,2022,36(3): 200-208.
YUAN Z W, CHANG F C, MA R, et al. Research progress of additive manufacturing of nickel-based superalloys[J]. Materials Reports, 2022, 36(3): 200-208.
[2]李涤尘,田小永,王永信,等.增材制造技术的发展[J]. 电加工与模具,2012(S1): 20-22.
LI D C, TIAN X Y, WANG Y X, et al. Developments of additive manufacturing technology[J]. Electromachining & Mould, 2012(S1): 20-22.
[3]杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016,59(12): 26-31.
YANG Q, LU Z L, HUANG F X, et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016, 59(12): 26-31.
[4]倪江涛,隋阳,刘涵,等.增材制造技术在国外航天动力系统中的应用[J].导弹与航天运载技术,2022(3): 144-146.
NI J T, SUI Y, LIU H, et al. Applications of additive manufacturing in foreign aerospace propulsion systems[J]. Missiles and Space Vehicles, 2022(3): 144-146.
[5]张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5): 29- 44.
ZHANG W K, TAN Y H, GAO Y S, et al. Research progress of additive manufacturing technology in liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29- 44.
[6]谭永华,赵剑,张武昆,等.融合增材制造的液体火箭发动机创新设计方法与应用[J].火箭推进,2023,49(4): 1-16.
TAN Y H, ZHAO J, ZHANG W K, et al. Innovative design method and application of liquid rocket engine integrated additive manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 1-16.
[7]刘占一,张魏静,周康,等.基于增材制造技术的液氧/甲烷燃烧室身部设计及热试分析[J].火箭推进,2023,49(4): 82-89.
LIU Z Y, ZHANG W J, ZHOU K, et al. Design and hot-test analysis on LO2/methane combustion chamber body based on additive manufacturing technology[J]. Journal of Rocket Propulsion, 2023, 49(4): 82-89.
[8]GURUSAMY M M, RAO B C. On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting process[J]. Journal of Manufacturing Processes, 2017, 28: 253-265.
[9]LIU H Q, CHENG Z C, YU W, et al. Deformation behavior and constitutive equation of 42CrMo steel at high temperature[J]. Metals, 2021, 11(10): 1614.
[10]杨波,吴诗豪,包振男,等.GH3128合金热变形行为与唯象本构模型[J].锻压技术,2022,47(5): 226-234.
YANG B, WU S H, BAO Z N, et al. Thermal deformation behavior and phenomenological constitutive model for GH3128 alloy[J]. Forging & Stamping Technology, 2022, 47(5): 226-234.
[11]YUAN K B, GUO W G, LI D W, et al. Influence of heat treatments on plastic flow of laser deposited Inconel 718: testing and microstructural based constitutive modeling[J]. International Journal of Plasticity, 2021, 136: 102865.
[12]GAO T J, ZHAO D, ZHANG T W, et al. Strain-rate-sensitive mechanical response, twinning, and texture features of NiCoCrFe high-entropy alloy: Experiments, multi-level crystal plasticity and artificial neural networks modeling[J]. Journal of Alloys and Compounds, 2020, 845: 155911.
[13]袁康博,姚小虎,王瑞丰,等.金属材料的率-温耦合响应与动态本构关系综述[J].爆炸与冲击,2022,42(9): 1-35.
YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials[J]. Explosion and Shock Waves, 2022, 42(9): 1-35.
[14]YANG H, YANG J S, LI J P, et al. Simulation of resistance heating process for AZ31B magnesium alloy sheet[J]. Journal of Physics: Conference Series, 2021, 1777(1): 012052.
[15]LIN Y C, CHEN X M, LIU G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986.
[16]ZHANG H J, WEN W D, CUI H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures: experiments and modeling[J]. Materials Science and Engineering: A, 2009, 504(1/2): 99-103.
[17]ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
[18]ZHANG H J, WEN W D, CUI H T, et al. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates[J]. Materials Science and Engineering: A, 2009, 527(1/2): 328-333.
[19]SAMANTARAY D, MANDAL S, BORAH U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 526(1/2): 1-6.
[20]CHIHAB K, ESTRIN Y, KUBIN L P, et al. The kinetics of the Portevin-Le Chatelier bands in an Al-5%Mg alloy[J]. Scripta Metallurgica, 1987, 21(2): 203-208.
[21]钱匡武,彭开萍,陈文哲.金属动态应变时效现象中的“锯齿屈服”[J].福建工程学院学报,2003,1(1): 4-8.
QIAN K W, PENG K P, CHEN W Z. Features of serrated yielding of dynamic strain aging phenomenon in metals and alloys[J]. Journal of Fujian University of Technology, 2003, 1(1): 4-8.
[22]LEBEDKINA T A, LEBYODKIN M A, CHATEAU J P, et al. On the mechanism of unstable plastic flow in an austenitic FeMnC TWIP steel[J]. Materials Science and Engineering: A, 2009, 519(1/2): 147-154.
[23]RENARD K, RYELANDT S, JACQUES P J. Characterisation of the Portevin-Le Chatelier effect affecting an austenitic TWIP steel based on digital image correlation[J]. Materials Science and Engineering: A, 2010, 527(12): 2969-2977.
[24]张琳,宋若康,屈国欣,等.镍基高温合金GH536在室温下的锯齿流变行为[J].昆明理工大学学报(自然科学版),2021,46(5): 26-31.
ZHANG L, SONG R K, QU G X, et al. Effects of loading rate on the serrated-flow behavior of GH536 superalloy at room temperature[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021, 46(5): 26-31.
[25]WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates[J]. International Journal of Plasticity, 2015, 65: 85-107.
[26]王建军,袁康博,张晓琼,等.第三型应变时效的提出与研究进展[J].爆炸与冲击,2021,41(5): 1-11.
WANG J J, YUAN K B, ZHANG X Q, et al. Proposition and research progress of the third-type strain aging[J]. Explosion and Shock Waves, 2021, 41(5): 1-11.
[27]SONG Y, GARCIA-GONZALEZ D, RUSINEK A. Constitutive models for dynamic strain aging in metals: Strain rate and temperature dependences on the flow stress[J]. Materials, 2020, 13(7): 1794.
[28]SONG Y, VOYIADJIS G Z. Constitutive modeling of dynamic strain aging for HCP metals[J]. European Journal of Mechanics - A/Solids, 2020, 83: 104034.
[29]RAN J Q, ZHANG G Q, CHEN G P, et al. A multi-strain-rate damage model on fracture prediction in single-point diamond turning process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(9): 2753-2765.
[30]徐腾,邓春阳,冉家琪,等.金属的应变率效应及其动态本构研究进展[J/OL].机械工程学报: 1-8.[2023-06-05]. https://kns.cnki.net/kcms/detail/11.2187.TH.20230320.1431.002.html.
XU T,DENG C Y,RAN J Q,et al. Research progress on strain rate effect and dynamic constitutive of metals[J/OL]. Journal of Mechanical Engineering: 1-8.[2023-06-05].https://kns.cnki.net/kcms/detail/11.2187.TH.20230320.1431.002.html.
[31]赵家黎,邵坤鹏,张盼盼,等.基于J-C本物模型的2A12铝合金高速铣削特性研究[J].兰州理工大学学报, 2021,47(06): 45-49.
ZHAO J L, SHAO K P, ZHANG P P, et al.study on high-speed milling characteristics of 2A12 aluminum alloy based on J-C consitutive model[J].Journal of Lanzhou University of Technology, 2021, 47(6): 45-49.

备注/Memo

收稿日期:2023- 09- 05 修回日期:2023- 10- 13
基金项目:国家重点实验室基金项目(2023LB013006); 中国航天科技集团有限公司自主研发项目
作者简介:苏鹏程(1998—),男,硕士,研究领域为金属疲劳与本构、增材制造技术。
通信作者:王佩艳(1984—),女,副教授,研究方向为金属和复合材料失效。

更新日期/Last Update: 1900-01-01