PDF下载 分享
[1]李佳楠,隋禄涛,周立新,等.驻波压力场速度波腹位置射流雾化的数值模拟[J].火箭推进,2024,50(02):15-26.[doi:10.3969/j.issn.1672-9374.2024.02.002]
 LI Jianan,SUI Lutao,ZHOU Lixin,et al.Numerical simulation of liquid jet atomization on velocity antinode of standing wave pressure field[J].Journal of Rocket Propulsion,2024,50(02):15-26.[doi:10.3969/j.issn.1672-9374.2024.02.002]
点击复制

驻波压力场速度波腹位置射流雾化的数值模拟

参考文献/References:

[1] VOROB'EV A P. Effect of acoustic oscillations on the stability of a plane jet[J]. Fluid Dynamics, 1991, 26(4): 521-526.
[2]CARPENTIER J B, BAILLOT F, BLAISOT J B, et al. Behavior of cylindrical liquid jets evolving in a transverse acoustic field[J]. Physics of Fluids, 2009, 21(2): 23601.
[3]JU D H, SUN X C, JIA X X, et al. Experimental investigation of the atomization behavior of ethanol and kerosene in acoustic fields[J]. Fuel, 2017, 202: 613-619.
[4]JIA X X, HUANG Z, JU D H, et al. Effect of high frequency acoustic field on atomization behavior of ethanol and kerosene[Z]. 2017.
[5]贾晓旭. 高频声振荡对航空煤油和乙醇喷雾宏观特性的影响[D]. 上海: 上海交通大学, 2018.
JIA X X. Effect of high frequency acoustic oscillation on spray macroscopic characteristics of kerosene and ethanol[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[6]SRINIVASAN V, SALAZAR A J, SAITO K. Modeling the disintegration of modulated liquid jets using volume-of-fluid(VOF)methodology[J]. Applied Mathematical Modelling, 2011, 35(8): 3710-3730.
[7]SRINIVASAN V, SALAZAR A J, SAITO K. Numerical simulation of the disintegration of forced liquid jets using volume-of-fluid method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(8): 317-333.
[8]YANG X C, TURAN A L. Simulation of liquid jet atomization coupled with forced perturbation[J]. Physics of Fluids, 2017, 29(2): 022103.
[9]POPINET S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2): 572-600.
[10]POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16): 5838-5866.
[11]谢远, 聂万胜, 高玉超, 等. 流量脉动对针栓式喷嘴雾化特性影响的仿真分析[J]. 火箭推进, 2023, 49(1): 54-64.
XIE Y, NIE W S, GAO Y C, et al. Simulation analysis on the influence of flow pulsation on the atomization characteristics of a pintle injector[J]. Journal of Rocket Propulsion, 2023, 49(1): 54-64.
[12]CHEN X D, MA D J, YANG V, et al. High-fidelity simulations of impinging jet atomization[J]. Atomization and Sprays, 2013, 23(12): 1079-1101.
[13]WEI Q, LIANG G Z. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1391-1406.
[14]TOMAR G, FUSTER D, ZALESKI S, et al. Multiscale simulations of primary atomization[J]. Computers & Fluids, 2010, 39(10): 1864-1874.
[15]刘昌波, 雷凡培, 周立新. 两股湍流射流撞击雾化过程的数值研究[J]. 推进技术, 2014, 35(12): 1669-1678.
LIU C B, LEI F P, ZHOU L X. Primary atomization simulations of two turbulent impinging jets[J]. Journal of Propulsion Technology, 2014, 35(12): 1669-1678.
[16]丁群. 基于OpenFOAM的VOF-DDM模型对雾化现象的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
DING Q. Application of VOF-DDM model for atomization numerical simulation based on OpenFOAM[D]. Harbin: Harbin Engineering University, 2018.
[17]HIRT C W, NICHOLS B D. Volume of fluid(VOF)method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[18]SHINJO J, UMEMURA A. Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532.
[19]QUINLAN J M, ZINN B. Simulating full-scale transverse combustion instabilities in a lab-scale facility[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[20]DUCRUIX S, REY C, CANDEL S. A method for the transverse modulation of reactive flows with application to combustion instability[J]. Combustion Theory and Modelling, 2005, 9(1): 5-22.
[21]DUCRUIX S, CANDEL S. External modulation of confined flows in computation fluid dynamics[J]. AIAA Journal, 2004, 42(8):1550-1558.
[22]HAKIM L, SCHMITT T, DUCRUIX S, et al. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: influence of the modulation frequency on the flame response[J]. Combustion and Flame, 2015, 162(10): 3482-3502.
[23]GONZALEZ-FLESCA M, SCHMITT T, DUCRUIX S, et al. Large eddy simulations of a transcritical round jet submitted to transverse acoustic modulation[J]. Physics of Fluids, 2016, 28(5): 55-106.
[24]SHARIFI V, KEMPF A M, BECK C. Large-eddy simulation of acoustic flame response to high-frequency transverse excitations[J]. AIAA Journal, 2019, 57(1): 327-340.
[25]SCHMITT T, RODRIGUEZ J, LEYVA I A, et al. Experiments and numerical simulation of mixing under supercritical conditions[J]. Physics of Fluids, 2012, 24: 55-104.
[26]HARDI J S. Experimental investigation of high frequency combustion instability in cryogenic oxygen-hydrogen rocket engines[D]. Adelaide: The University of Adelaide, 2012.
[27] CLARK B J. Breakup of a liquid jet in a transverse flow of gas[R]. NASA TN D-2424, 1964.

备注/Memo

收稿日期:2022- 09- 19 修回日期:2022- 12- 23
基金项目:国家重大基础研究项目(613193)
作者简介:李佳楠(1989—),男,博士,工程师,研究方向为液体火箭发动机系统。

更新日期/Last Update: 1900-01-01