作者简介: 俞南嘉(1976—),男,副教授,研究领域为航空宇航推进理论与工程
作者简介: 俞南嘉(1976—),男,副教授,研究领域为航空宇航推进理论与工程
(School of Astronautics, Beihang University,Beijing 100191, China)
pintle injector; numerical simulation; simulation model; combustion efficiency
为了研究低温非自燃推进剂应用针栓式喷注器的流场分布规律,总结不同动量比对针栓式发动机燃烧流场的影响,采用数值仿真的方法研究针栓式液氧/煤油发动机的燃烧流场分布,仿真模型采用k-ε湍流模型、有限速率-涡耗散燃烧模型等。仿真结果表明:针栓式发动机在燃烧室内形成两个回流区,有利于燃烧室头部冷却; 针栓式喷注器能够在燃烧室壁面形成液膜,提高了燃烧室壁面的热防护; 随着动量比增加,燃烧高温区向燃烧室壁面靠近; 动量比为1时,针栓式喷注器具有最佳的燃烧效率。
In order to study the flow field distribution of the pintle injector with cryogenic and non-hypergolic propellant, the influence of different momentum ratios on the combustion flow field is summarized for the engine. In this paper, a numerical simulation method is used to investigate the distribution of the combustion flow field for LOX/kerosene engine with pintle injector. The simulation model adopts k-ε turbulence model, finite rate/eddy-dissipation combustion model, etc. The simulated results show that the pintle engine can form two recirculation zones in the combustion chamber, which is beneficial to the cooling of the combustion chamber head. In addition, the pintle injector can form liquid film on the wall of combustion chamber, which improves the thermal protection of combustion chamber wall. As the momentum ratio increases, the high temperature area in combustor approaches to the wall of combustion chamber, and the pintle injector achieves the highest combustion efficiency when the momentum ratio is 1.
目前,液体火箭发动机是航天运输及空间飞行器的主要动力装置,液氧/煤油火箭发动机因其制造成本低、发动机性能高、环保无污染、推力可控以及安全系数高等特点,在航天运输领域得到广泛应用[1]; 同时,液氧/煤油火箭发动机也是未来可重复使用发动机发展的重要方向,可重复使用火箭发动机意味着火箭的子级可以回收并且重复使用,其实现的重要途径就是研发推力可调的火箭发动机[2]。
针栓式喷注器作为变推力发动机应用的典型,被广泛应用到火箭发动机中。最著名的应用就是美国TRW公司登月舱下降段发动机,该发动机先后将12名宇航员送上月球[3]; 1995年美国又研制了世界上最大的针栓发动机TR-106,推力达到了290吨级[4]; 美国SpaceX公司于2015年12月完成了猎鹰9号火箭的首次陆上垂直降落回收,其中,猎鹰9号火箭的梅林1D发动机即采用针栓式喷注器[5],推力可实现50%~100%的调节; 2016年,Min Son等人提出了针栓式喷注器最新的理论设计方法[6]; 我国于上世纪70年代开始针栓式喷注器的研究,1992年研制成功机械定位的变推力发动机,该发动机采用自燃推进剂N2O4/UDMH[6]; 2013年嫦娥三号探测器采用双调针栓式喷注器实现了月球软着陆,该发动机依然采用常温自燃推进剂[7]。但是,目前我国对于低温非自燃推进剂的针栓式发动机的研究很少,开展针栓式液氧/煤油发动机的研究很有意义。
针栓式变推力液体火箭发动机的原理是通过调节喷注器中的环形套筒来调节两个同轴环缝的喷注通道的流通面积,实现对燃料和氧化剂喷注压降、喷注液膜厚度等参数的调节,其中,环形调节套筒称为针栓式喷注器的针阀,两个环形喷注通道称为氧化剂喷嘴和燃料喷嘴[8]。针栓式喷注器原理图如图 1所示。
液体火箭发动机的喷注燃烧一般是气液两相的喷注燃烧,推进剂通过氧化剂喷嘴和燃料喷嘴以液体射流或者液膜的形态喷入燃烧室,氧化剂和燃料之间强烈的相互作用,使得液体推进剂发生碰撞、雾化、混合等过程,并在对流、辐射等传热过程中蒸发和燃烧。因此,数学模型涉及到控制方程、湍流模型、燃烧模型等[9]。
液体火箭发动机喷雾燃烧的控制方程包含气相控制方程和液相控制方程,气相控制方程一般用欧拉坐标系中的N-S方程来描述,液相控制方程则是由拉格朗日坐标系中N-S方程对单个液滴进行描述,气液两相之间的耦合采用气液两相的耦合源项来考虑[8]。
对于有N个组元的混合物来说,控制方程由连续方程、动量方程、能量方程、组元方程以及状态方程组成封闭方程组,其中,连续方程为
(ρ)/(t)+/(xj)(ρuj)=Sm(1)
动量方程为
/(t)(ρui)+/(xj)(ρuiuj)=-(p)/(xi)+(τij)/(xj)+Sdi+Sdm(2)
能量方程为
/(t)(h)+/(xj)(ρujh)=(p)/(t)+/(xj)(μ(h)/(xj))+Se(3)
组元方程为
/(t)(Yi)+/(xj)(ρujYi)=/(xi)(ρD(Yi)/(xj))+wi+Sg(4)
状态方程为
p=ρRT
式中:ρ为混合物密度; Sm为质量守恒方程中的源项,代表单位体积中所有液滴蒸发导致的气相质量增长率; Sdi,Sdm为动量方程中相互作用的源项,分别为单位体积的液滴反作用力使气相的动量的增长率和单位体积液滴蒸发带给气相的动量; Se为能量守恒方程中的相互作用源项; Sg为组分方程中的源项; h为混合物静焓,τij为应力张量,μ为动力粘性系数,wi为组分i的化学反应速度,R为通用气体常数。
湍流模型采用k-ε双方程模型来计算液体火箭发动机的燃烧,该模型广泛应用于各种工程流动和热交换的数值模拟中,并得到了较好工程验证,k-ε模型方程为:
((ρk))/(t)+((ρkui))/(xi)=
/(xj)[(μ+(μt)/(σk))(k)/(xj)]+Gk-ρε(5)
((ρε))/(t)+((ρεui))/(xi)=
/(xj)[(μ+(μt)/(σε))(ε)/(xj)]+C1εε/k-C2ερ(ε2)/k(6)
式中:C1ε和C2ε为经验常数,C1ε=1.44,C2ε=1.92; σk和σε分别是与湍流动能k和耗散率ε对应的普让特数; 模型常数取值:Cμ=0.09,σk=1.0,σε=1.3; μt为湍流粘性; Gk是由于速度梯度引起的湍流动能k的产生项。
燃烧的组分输运模型采用有限速率-涡耗散模型,反应考虑了组分之间的相互扩散过程和推进剂进口的扩散作用; 该模型的化学反应速率由大涡混合时间尺度k/ε控制,并对Arrhenius和涡耗散反应速率都进行计算,并取两者之间化学反应速率较小的一个[9]; 液氧和煤油的化学反应机理采用单步总包反应,其化学反应关系式为:
C12H23+17.75O2=12CO2+11.5H2O
由阿伦尼乌斯计算的燃烧反应速率为:
Ri=Mw,i∑Nri=1R^i(7)
由涡耗散控制的化学反应速率为:
Ri=v'iMw,iAρε/kminR((YR)/(v'RMw,R))(8)
Ri=v″iMw,iABρε/k(∑pYp)/(∑Njv″jMw,j)(9)
式中:Ri为反应物质i的化学反应速率; Mw,i为第i种物质的分子质量; R^i为第i种物质的产生/分解速率; ρ为气相密度; v'i为反应物i的化学计量数值; v″i为生成物i的化学计量数值; YR为反应物组分质量系数; YP为反应物组分质量系数; A为经验常数,值为4; B为经验常数,值为0.5; Mw,i为第i种物质的分子量; k,ε分别为湍流脉动动能及耗散率。
所设计发动机的总质量流量为381 g/s,理论比冲为2 806.59 m/s,特征速度为1 776.6 m/s,喷注方案为燃料中心式,即燃料在内侧喷注,喷注角度为90o; 氧化剂在外侧喷注,喷注角度为52.36o,发动机的参数如表1所示。
由于发动机计算域结构的对称性,本文采用1/8模型进行网格的划分,使用ICEM软件划分计算域网格。由于燃烧室内存在剧烈的化学反应,并伴随着复杂的流动过程,因此为更准确地捕捉流场信息,对喷嘴、燃烧室头部和燃烧室壁面进行网格加密,计算域网格数量为118万,图 2为燃烧室头部的计算域网格。
1)入口边界条件:对于液体火箭发动机的数值仿真,一般采用离散相模型作为入口边界。本文设置液滴每隔20步化学反应喷注一次,同时考虑颗粒对连续相的影响,颗粒轨道的迭代步数设置为1 000,离散物模型选择压力梯度模型、随机碰撞模型以及裂解模型; 液氧和煤油颗粒喷射源的喷注类型选择SURFACE,颗粒形式为DROPLET,同时分别设置液滴的入口温度、入口速度、质量流量、液滴尺寸等,其中,煤油和液氧的液滴尺寸均设置为0.4 mm。
2)出口边界条件:发动机喷管出口一般为超音速的气流,各参数计算采用外插公式得到。出口边界条件设置湍流粘度和水利直径,出口压力为环境压力。
3)壁面边界条件:壁面边界采用绝热无滑移的壁面条件,即u=w=v=0; 并且压力梯度导数、组分质量分数梯度导数为零。
4)对称面边界:流场是对称分布的,因此对称面采用对称面边界条件,对称面处参数的法向导数为零[10-11]。
仿真计算采用Fluent软件完成,计算获得了发动机的燃烧流场分布。图 3为发动机燃烧室内头部附近流线分布,根据图可知,在燃烧室头部以及针栓头部附近存在两块回流区,即外侧回流区和中心回流区,这是针栓式喷注器喷雾混合模式的典型特征,这种形式是实现高效燃烧和保证燃烧稳定性的基础。外侧回流区主要是推进剂向头部的回流; 中心回流区主要是推进剂向针栓头部回流,加剧推进剂液滴的二次破碎和掺混燃烧效果,提高燃烧效率。
图 4为动量比1工况下的温度分布以及Y=100 mm位置截面的温度分布,根据轴向的温度分布可知,燃烧室壁面上游区域存在由氧化剂形成的液膜低温区,这是因为液氧和煤油从喷注通道流出后发生碰撞,氧化剂获得径向速度分量,向上运动碰撞到燃烧室壁面后,分成两部分,一部分向低压区(燃烧室头部)流动,形成燃烧室头部回流区; 一部分沿燃烧室壁面向下游流动,形成燃烧室壁面的液膜,该液膜对发动机壁面起到冷却的作用,对发动机冷却是有利的。流动过程中煤油与氧的不断燃烧消耗,使得液膜厚度变得越来越小,到燃烧室中下游附近消失; 中心回流区内的主要组分是未参与燃烧的煤油,在主流燃气的带动下,未燃烧的煤油不断向下游流动,使得中心轴线附近出现低温区,这个低温区有利于降低针栓头部的温度,起到保护针栓的作用。
图5为燃烧室中心轴线的温度曲线,根据曲线可知,在针栓头部附近温度大约为1 445 K,在喷管的喉部附近温度达到最高,约为2 500 K; 图 6为Y=100 mm,Z=0 mm位置处X方向的湍流强度分布,据图可知,在径向X=8 mm左右位置处湍流强度最大,该位置对应温度流场中的燃烧高温区,该区域存在剧烈的化学反应,湍流脉动速度大,导致推进剂混合剧烈,可以提高燃烧效率。
动量比是指推进剂的径向射流动量值与轴向射流动量值的比,即
Cm=(m·rvr)/(m·ava)
式中:m·r,m·a分别为径向和轴向的质量流量; vr,va分别为径向和和轴向的速度。
动量比作为针栓式喷注器的重要性能参数,代表了喷注器的雾化混合程度,推进剂的雾化混合主要是通过径向射流液膜与轴向射流液膜碰撞实现,针栓式喷注器可以通过改变动量比的大小,提高或者降低射流的穿透能力,增强或者减弱推进剂的雾化混合程度,从而改变燃烧效率高低同时。因此,本文分别设计动量比为0.45,0.8,1.0,1.2和1.5的工况进行数值计算,得出如下结果。
图7为不同动量比的温度分布,根据图可知,随着动量比增加,燃烧室壁面液膜厚度越来越小,壁面温度越来越高; 动量比为1.5时,燃烧高温区已经贴近燃烧室壁面,说明随着径向射流动量的增加,燃料和氧化剂的燃烧面向壁面移动,使得燃烧高温区靠近壁面。根据图 8和图 9的压力分布可知,随着动量比增加燃烧室压力呈现先增加后减小的趋势,在动量比为1时,燃烧室压力最高,这是因为动量比小于1时,随着动量比增加,推进剂径向相对射流动量增加,一定程度上提高了煤油和氧的混合程度,有利于燃烧,使的燃烧室压力有增加的趋势,但是,动量比大于1时,随着动量比的增加,燃烧室压力有减小的趋势,说明动量比大于1时,径向射流动量比较大,轴向射流动量相对减小,使得轴向推进剂组元穿透径向射流的难度增加,导致碰撞、混合的效果减弱,发动机燃烧效果略有减小,发动机燃烧室压力有所降低。图 10为不同动量比的煤油质量分数分布云图,根据图可知,随着动量比增加,径向射流动量增强,使得煤油组分在燃烧室内占据的区域增加,氧和煤油掺混的区域向燃烧室壁面靠近,导致燃烧的高温区向燃烧室壁面靠近,提高了发动机壁面的热载荷,不利于发动机燃烧室的热防护。
为了评估燃烧室内能量转换过程中的损失大小,引入燃烧效率的概念,火箭发动机的燃烧效率是指实际特征速度与理论特征速度的比值[11],即:
ηc=(C*ex)/(C*th)=(pcAt)/(m·C*th)
式中:C*ex,C*th分别为实际特征速度与理论特征速度; pc,At,m·分别为燃烧室压力、喷管喉部面积和推进剂质量流量。
根据数值仿真结果计算出不同动量比工况下的燃烧效率如表2所示。根据表可知,动量比为1时,发动机的燃烧效率最高为96.65%。为了分析发动机燃烧效率和动量比之间的变化关系,探究发动机具有最佳燃烧性能的工况点,根据表2数据采用多项式拟合的方法拟合出燃烧效率与动量比的关系曲线如图 11所示,根据图可知,随着动量比增加,燃烧效率呈现先增加后减小的趋势,并且动量比为1时燃烧效率最高,说明该状态下推进剂混合效果最好,具有最佳的燃烧性能。因此,在设计针栓式喷注器时,为了提高发动机性能,尽量选择动量比为1的工况点进行设计。
本文针对液氧/煤油推进剂的针栓式发动机进行数值仿真,得出如下结果:
1)针栓式发动机在燃烧室内形成两个回流区,即燃烧室头部回流区和针栓头部回流区,回流区的存在有利于发动机喷注器的热防护;
2)针栓式发动机的喷注形式能够在燃烧室壁面形成液膜,有利于燃烧室冷却;
3)随着动量比增加,燃烧该高温区向壁面靠近,增加了壁面热载荷,对发动机的热防护是不利的;
4)动量比接近1时,雾化混合效果最好,燃烧效率最高。