MMH/NTO双组元自燃推进剂反应机理简化

1西南交通大学 机械工程学院,四川 成都 610031; 2西安航天动力研究所 液体火箭发动机技术重点实验室,陕西 西安 710100

甲基肼; 四氧化二氮; 反应机理; 简化机理; 着火延迟时间; 火焰温度

Investigation of reduced chemical kinetic model of MMH/NTOhypergolic propellants
YIN Jihui1,HU Hongbo2,LI Yuanyuan1,ZHENG Dong1

1School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China

monomethylhydrazine; nitrogen tetroxide; reaction mechanism; simplified mechanism; ignition delay time; flame temperature

备注

采用反应流分析结合灵敏度分析的简化方法,对前期研究发展的MMH/NTO详细燃烧化学反应机理进行了简化,获得包含25个组分和43个基元反MMH/NTO简化反应动力学模型。并从着火延迟时间和燃烧火焰温度两方面,通过对比理论结果、详细机理和简化机理预测结果,在较宽范围参数内对简化机理进行了验证。验证结果表明简化机理和详细机理预测的MMH/NTO体系的着火延迟时间和燃烧火焰温度具有非常高的一致性,说明了简化反应机理的合理性。进而分析了初始温度、燃烧室压力、以及氧燃比对MMH/NTO体系的着火延迟时间和燃烧火焰温度的影响规律,MMH/NTO体系的着火特性对初温和燃烧室压力较为敏感,燃烧火焰温度则对氧燃比和燃烧室压力较为敏感。为后续发动机燃烧的CFD数值计算提供了准确的反应动力学模型。

In this paper, reacting flow analysis combined with sensitivity analysis was used to simplify the detailed chemical mechanism of MMH/NTO hypergolic propellants developed in our previous research. Andthereduced kinetic model consistingof 25 species and 43 elementary reactions was obtained. From ignition delay time and combustion flame temperature, the reducedmodel has been validated againstthe theoretical results and detailed model at widerconditions. The validation shows that the ignition delay timesandcombustion flame temperatures predicted by the reduced model arehighly consistent with thatofthe detailed model.Furthermore, the influence of initial temperature, chamber pressure and oxygen/fuel mass ratio on the ignition delay time and combustion flame temperature was analyzed.The results show that the ignition characteristics of MMH/NTO bipropellant systems are more sensitive to initial temperature and chamber pressure, while the combustion characteristics are more sensitive to O/F and chamber pressure. The present research provides areducedand accurate kinetic model for multi-dimensional CFD(Computational Fluid Dynamics)combustion simulation in engine combustor.

·