球型调节阀液动力矩特性仿真及优化设计

1.北京航天动力研究所,北京 100076; 2.中国航天科技集团有限公司 低温液体推进技术实验室,北京 100076

调节阀; 液动力矩; 数值仿真; 影响因素; 优化设计

Simulation and optimization design of hydrodynamic torque characteristics of ball-type regulating valves
LIANG Wendong1,2, XU Jian1,2, LIU Bo1, LI Youzhi1

1.Beijing Aerospace Propulsion Institute, Beijing 100076, China; 2.Laboratory of Science and Technology on Cryogenic Liquid Propulsion of CASC, Beijing 100076, China

regulating valve; hydrodynamic torque; numerical simulation; influence factor; optimization design

DOI: 10.3969/j.issn.1672-9374.2024.03.006

备注

为了获得液体火箭发动机调节阀的液动力矩特性,采用kubota空化模型和标准k-ε湍流模型针对某型调节阀在发动机运行工况下的空化流动开展了数值仿真研究,通过与液流实验数据的对比验证模型准确性,并定量分析了阀芯液动力矩的影响因素、分布特性和演化规律。研究结果表明:阀芯液动力矩大小取决于开度、压差和阀芯流道直径。相同压差下,开度由10°增加至80°,液动力矩单调增加,方向均为使阀芯关闭。相同开度下,压差分别增至3倍和5倍,液动力矩分别变化为原来的3倍和5倍左右。液动力矩分布主要由密封面力矩和主流道力矩两部分组成。随着开度的增加,密封面力矩先减小后增加,主流道力矩先增加后减小。阀芯流道直径由70 mm减小为60 mm,液动力矩最大值增加了24.5 N·m。这是因为相同发动机工况下,减小流道直径使得阀芯开度增加,主流道力矩增加数值大于密封面力矩减小数值,所以总液动力矩呈增加特征。提出了削去原始模型主流道下壁面区域的优化方案,优化模型在100%工况时液动力矩仅为13.2 N·m,且优化模型的流通面积保持不变。与降低流道直径的优化方案相比,所提出的针对主流道下壁面优化方案液动力矩最大值减小了94.4 N·m,大大减轻了控制电机的负荷,已成功经过多次发动机试车考核,提高了液体火箭发动机的可靠性,并为实现发动机轻量化提供了重要参考。
To obtain the hydrodynamic torque characteristics of the regulating valve used in liquid rocket engines, the Kubota cavitation model and standard k-ε turbulence model are utilized in this paper to numerically investigate the evolution of the flow field in the regulating valve. The numerical simulation results are compared with experimental data to verify the accuracy of the simulation model. The influence factors, distribution characteristics and evolution of hydrodynamic torque are analyzed quantitatively. The results indicate that the hydrodynamic torque depends on the opening, pressure difference and diameter of the flow passage. Under the same pressure difference, when the opening increases from 10 degrees to 80 degrees, the hydrodynamic torque monotonously increases and the direction is to close the valve. Under the same opening, when the pressure difference increases 3 times and 5 times, the hydrodynamic torque changes to about 3 times and 5 times respectively. The hydrodynamic torque distribution consists of the sealing surface moment and main passage moment. With the increase of the opening, the sealing surface moment first decreases and then increases, while the main passage moment first increases and then decreases. When the diameter of the flow passage decreases from 70 mm to 60 mm, the maximum value of hydrodynamic torque increases by 24.5 N·m. This is because under the same working condition, reducing the diameter of the flow passage will increase the valve opening, and the increasing value of the flow passage is greater than the decreasing value of the sealing surface torque. An optimization scheme is proposed to cut off the lower wall of the main channel in the original model, and the hydrodynamic torque of the optimized model is only 13.2 N·m at 100% working conditions. The flow coefficient of the optimized model remains unchanged. The maximum hydrodynamic torque of the optimization model decreases by 94.4 N·m, which greatly reduces the load of the control motor. An important reference is provided for improving the reliability of liquid rocket engines and achieving lightweight.
·