超高参数火箭煤油在小通道圆管内的流动换热特性

1.西安交通大学 动力工程多相流国家重点实验室,陕西 西安 710049; 2.北京航天试验技术研究所 航天绿色推进剂研究与应用北京市重点实验室,北京 100074

再生冷却; 火箭煤油; 流动换热; 超高参数; 小通道; 高热流密度

Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions
LIU Zhaohui1,CHEN Xuejiao2,JIANG Rongpei2

1.State Key Laboratory of Multiphase Flow in Power Engineering,Xi'an Jiaotong University, Xi'an 710049, China; 2.Beijing Key Laboratory of Research and Application for Aerospace Green Propellants,Beijing Institute of Aerospace Testing Technology, Beijing 100074, China

regenerative cooling; rocket kerosene; heat transfer; ultra-high parameter; mini-channel; high heat flux

DOI: 10.3969/j.issn.1672-9374.2024.05.011

备注

火箭煤油再生冷却过程具有高压、高温、高热流密度和高质量流速等特点。在超高参数条件下,采用低电压大电流电加热方法模拟火箭发动机推力室壁面热环境,在高温合金钢φ2 mm×0.5 mm圆管内研究了火箭煤油的流动换热特性。参数范围为压力25~65 MPa,质量流速8 500~51 000 kg/(m2·s),流体温度常温为~500 ℃,热流密度最高为35 MW/m2。研究表明:在所测试条件下,火箭煤油在小通道圆管内处于单相液态强制对流换热机制; 换热性能主要受到流体温度和质量流速的影响; 流体温度增加,换热系数增加; 质量流速增加,换热系数增加; 压力在25~65 MPa范围内对换热性能无显著影响; 热流密度增加,内壁温显著增加,但热流密度变化对换热系数无显著影响; 受入口强化换热效应的影响,换热系数增加,热流密度越高,入口效应越明显。超高参数尤其是超高压力条件下的火箭煤油换热特性,为火箭煤油再生冷却技术应用提供参考。
The regenerative cooling process using rocket kerosene has the specifications of high pressure, high temperature, high heat flux and high mass flow rate. Under the condition of ultra-high parameters, the low-voltage and high-current electrical heating method was used to simulate the thermal environment of the thrust chamber in the rocket engine, and the heat transfer characteristics of rocket kerosene are studied in the high-temperature alloy steel φ2 mm×0.5 mm round tube. The parameter ranges are of pressure 25-65 MPa, mass flow rate 8 500~51 000 kg/(m2·s), fluid temperature up to ~500 ℃ and heat flux up to 35 MW/m2. The results indicate that under the tested conditions, the rocket kerosene is in a single-phase liquid forced convection heat transfer mechanism. The heat transfer performance is mainly affected by the fluid temperature and mass flow rate. As the fluid temperature increased, the heat transfer coefficient increases. As the mass flow rate increased, the heat transfer coefficient increases. The pressure in the range of 25-65 MPa has no significant effect on the heat transfer performance. With the increase of heat flux, the inner wall temperature increases significantly, but the variation of heat flux has no significant effect on the heat transfer coefficient. Under the influence of the heat transfer enhance effect at the inlet, the heat transfer coefficient increases, and the higher the heat flux, the more obvious the inlet effect is. The heat transfer characteristics of rocket kerosene under ultra-high parameters, especially under ultra-high pressure conditions, provide a reference for the application of regenerative cooling technology in the rocket engine.
·