超声波液体推进剂气泡检测技术研究综述

1.西安交通大学 精密微纳制造技术全国重点实验室,陕西 西安 710049; 2.西安交通大学 微纳制造与测试技术国际合作联合实验室,陕西 西安 710049; 3.西安交通大学 机械工程学院,陕西 西安 710049; 4.西安航天动力试验技术研究所,陕西 西安 710100; 5.西安卫星测控中心,陕西 西安 710043; 6.西安交通大学 仪器科学与技术学院,陕西 西安 710049

液体推进剂; 气泡检测; 超声波检测; 超声气泡检测

Review on ultrasonic bubble detection technology for liquid propellant
TAN Hongqiang1,2,3,ZHANG Jianming4,YANG Juan5,ZHAO Yihe1,2,6,LI Dahai4,WANG Jiuhong1,2,6,LI Zhikang1,2,6,ZHAO Libo1,2,6

1.State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049,China; 2.International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China; 3.School of Mechanical Engineering,Xi'an Jiaotong University, Xi'an 710049, China; 4.Xi'an Aerospace Propulsion Test Technology Institute,Xi'an 710100, China; 5.China Xi'an Satellite Control Center, Xi'an 710043, China; 6.School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

liquid propellant; bubble detection; ultrasonic detection; ultrasonic bubble detection

DOI: 10.3969/j.issn.1672-9374.2024.06.004

备注

液体推进剂混入气泡会对发动机的启动和稳定运行产生影响,可能导致发动机突然熄火,造成重大的安全事故和经济损失。因此,准确检测液体推进剂中的气泡具有重要的意义。首先总结了液体推进剂中气泡的形成原因和发展过程。进一步,对现有气泡检测方法的原理、特点以及研究现状进行详细讨论,指出了超声波检测技术在液体推进剂气泡检测的优势。详细阐述了超声波多普勒、超声波衰减、超声波层析的气泡测量原理,并总结了超声气泡检测技术的研究现状以及未来发展的趋势。通过对气泡形成和发展、现有气泡检测方法、超声波气泡检测技术等的介绍和展望,为液体推进剂气泡检测技术发展和后续研究提供了重要参考。
Liquid propellant mixed with air bubbles will have an impact on engine start-up and stable operation, which may lead to sudden engine shutdown. And it can also cause major safety incidents and economic losses. Therefore, the accurate detection of air bubbles in liquid rocket propellant delivery pipelines is of great significance. Firstly, this paper summarises the reasons for the formation and development process of bubbles in liquid rocket propellants. Further, the paper provides a detailed discussion of the principles, characteristics, and current research status of existing bubble detection methods. This paper also points out the advantages of ultrasonic detection technology in liquid propellant for pipeline bubble detection. In addition, the paper details the principles of ultrasonic Doppler, ultrasonic attenuation, and ultrasonic chromatography for bubble measurements. At last, this paper summarises the current state of research on ultrasonic bubble detection techniques and the trends for future development. Through the introduction and outlook of bubble formation and development, existing bubble detection methods, and ultrasonic bubble detection technology, this paper provides an important reference for the development of liquid rocket propellant pipeline bubble detection technology and subsequent research.
·