航天推进技术研究院主办
LI Zi-ran,LIN Zhi-yong,HAN Xu.Investigation for initiation process of supersonic oblique detonation engine[J].Journal of Rocket Propulsion,2013,39(03):1-8.
超声速斜爆震发动机起爆过程研究综述
- Title:
- Investigation for initiation process of supersonic oblique detonation engine
- 文章编号:
- 1672-9374(2013)03-0001-08
- 分类号:
- V235-34
- 文献标志码:
- A
- 摘要:
- 对超声速斜爆震发动机的起爆方式进行了比较分析,对起爆发展和稳定特性的研究历程和发展现状进行了综述,对相关的研究方法和技术进行了概括,提出了利用先进光学测量技术,结合激光诱导荧光技术对超声速斜爆震发动机起爆过程进行实验研究的设想。
- Abstract:
- The initiation modes of the supersonic oblique detonation engine are compared and analyzed. The research progress and development status of the detonation initiation process and stabilization features are summarized. The relevant investigation methods and technologies are generalized. An assumption for experiment research on initiation process of the supersonic oblique detonation engine is proposed, that is, the advanced optical measuring technology and PLIF technology are adopted in the research.
参考文献/References:
[1]LU F K. Prospects for detonations in propulsion [C]// Pro- ceedings of the 9th International Symposium on Experi- mental and Computational Aerothermodynamics of Inter- nal Flows. Gyeongju, Korea: ISAIF, 2009: 8-11.
[2]OSTRANDER M J, HYDE J C, YOUNG M F, et al. Stan- ding oblique detonation wave engine performance, AIAA 1987-2002 [R]. USA: AIAA, 1987.
[3]SISLIAN J P. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power, 2001, 17(3): 599-604.
[4]FUSINA G, PARENT B. Stability of standing oblique de- tonation waves, AIAA2004-1125 [R]. USA: AIAA, 2004.
[5]HARRIS P G. Structure of conical oblique detonation waves[C]// 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. [S.l.]: AIAA, 2008.
[6]FUSINA G, PARENT B. Numerical study of structure and stability of oblique detonation waves [C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2004:11-22.
[7]CARRIER G F. Nonintrusive stabilization of a conical detonation wave for supersonic combustion[J]. Combustion and Flame, 1995, 103(4): 281-295.
[8]LEE J H S. Initiation of gaseous detonation[J]. Annual Review of Physical Chemistry, 1977, 28: 75-104.
[9]GROSS R A. A study of supersonic combustion[J]. Journal of the Aero/Space Sciences, 1960, 27(7): 517-524.
[10]RUBINS P M. Shock-induced combus- tion with oblique shocks, comparison of experiment and kinetic calculations[J]. AIAA Journal, 1963, 1(12): 2778-2784.
[11]LEHR H F. Experiments on shock induced combustion [J]. Astron. Acta., 1972, 17(4): 589-597.
[12]CHOI J Y, JEUNG I S, YOON Y. Validation of CFD al- gorithms for unsteady shock-induced combustion, AIAA 98-3217[R]. USA: AIAA, 1998.
[13]KAMIYAMA Y. Flow features of shock-in- duced combustion around cylindrical projectiles[J]. Sym- po- sium (International) on Combustion, 2000, 28: 671-677.
[14]KANESHIGE M J, SHEPHERD J E. Oblique detonation stabilized on a hypervelocity projectile[J]. Symposium (International) on Combustion, 1996, 26(2): 3015-3022.
[15]VIGUIER C, GOURARA A, DESBORDES D. Three-di- mensional structure of stabilization of oblique detonation wave in hypersonic flow[J]. Symposium (International) on Combustion, 1998, 27: 2207-2214.
[16]VIGUIER C. Onset of oblique detonation waves: com- parison between experimental and numerical results for hydrogen-air mixtures[J]. Symposium (International) on Combustion, 1996, 26(2): 3023-3031.
[17]MORRIS C I. Combined schlieren and OH PLIF imaging study of ram accelerator flowfields, AIAA 98-0244[R]. USA: AIAA, 1998.
[18]LI C, KAILASANATH K, ORAN E. Effects of boundary layers on oblique-detonation structures, AIAA 1993-0450 [R]. USA: AIAA, 1993.
[19]PAPALEXANDRIS M V. A numerical study of wedge- induced detonations[J]. Combustion and Flame, 2000, 120 (4): 526-538.
[20]KASAHARA J, ARAL T, MATSUO A, et al. Experimen- tal investigations of steady-state oblique detonation waves generated around hypersonic projectiles, AIAA 2001-1800 [R]. USA: AIAA, 2001.
[21]GRISMER M J, POWERST J M. Calculations for steady propagation of a generic ram accelerator configuration[J]. Journal of Propulsion and Power, 1995, 11(1): 111-121.
[22]FAN H Y. Numerical study of reactive flow past a wedge in a channel, AIAA 2005-1168[R]. USA: AIAA, 2005.
[23]CHOI J Y. Unstable combus- tion induced by oblique shock waves at the non-attach- ing condition of the oblique detonation wave[J]. Pro- ceedings of the Combustion Institute, 2009, 32(2): 2387-2396.
[24]FUSINA G, SISLIAN J P, PARENT B. Computational study of formation and stability of standing oblique de- tonation waves, AIAA 2004-1125[R]. USA: AIAA, 2004.
[25]POWERS J M, STEWARTT D S. Approximate solutions for oblique detonations in the hypersonic limit[J]. AIAA Journal, 1992, 30(3): 55-66.
[26]ASHFORD S A, EMANUEL G. Wave angle for oblique detonation waves[J]. Shock Waves, 1994, 3(4): 327-329.
[27]ISHII K. Initiation and propagation of detonation waves in combustible high speed flows [J]. Proceedings of the Combustion Institute, 2009, 32: 2323-2330.
[28]LEFEBVRE M H, FUJIWARA T. Numerical modeling of combustion processes induced by a supersonic conical blunt body[J]. Combustion and Flame, 1995, 100(1-2): 85-93.
[29]STEWART D S, KASIMOV A R. State of detonation stability theory and its application to propulsion[J]. Journal of Propulsion and Power, 2006, 22(6): 1230.
[30]CHOI J Y. Capturing unstable wrinkled oblique detonation wave front by Hi-Fi numerical simulation, AIAA 2006-5100[R]. USA: AIAA, 2006.
[31]HIGGINS A J. Ram accelerators: outstanding issues and new directions[J]. Journal of Propulsion and Power, 2006, 22(6): 1170-1177.
[32]HE L. An analysis of the quenching phenomenon and low frequency instability in detonations induced by blunt projectiles, AIAA-97-0806[R]. USA: AIAA, 1997.
[33]DAIMON Y, MATSUO A, KASAHARA J. Wave struc- ture and unsteadiness of stabilized oblique detonation waves around hypersonic projectile, AIAA 2007-1171[R]. USA: AIAA, 2007.
[34]WALTER M A T, FIGUEIRA L F. Numerical study of detonation stabilization by finite length wedges[J]. AIAA Journal, 2006, 44(2): 353-361.
备注/Memo
收稿日期:2012-09-05;修回日期:2012-12-12
基金项目:国家自然科学基金资助项目(51206182)
作者简介:李自然(1977—),男,博士,研究领域为先进火箭推进技术、高等教育战略规划研究