航天推进技术研究院主办
NAN Xiang-Jun,ZHANG Rui,ZHANG Liu-huan.Effect of wall surface heat dissipation on performance of supersonic nozzle[J].Journal of Rocket Propulsion,2015,41(03):33-38.
壁面散热对超声速喷管性能的影响
- Title:
- Effect of wall surface heat dissipation on performance of supersonic nozzle
- Keywords:
- nozzle; heat dissipation law; thrust coefficient; theory analysis
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 采用一维无粘理论对扩张喷管的流动和性能进行了计算,研究了壁面散热量和散热规律对喷管流动、出口气流参数和性能参数的影响。结果表明:壁面散热会导致喷管沿程静压、静温和总温减小、出口马赫数和总压增大,并且随散热量增大,喷管的工作状态可依次经历欠膨胀状态、临界状态和过膨胀状态,但是喷管的推力系数逐渐减小,性能下降;壁面散热规律对喷管性能有很大影响,入口附近散热量较大出口附近散热量较小时,喷管的性能下降最大。从研究结果可以看出,壁面散热可以调节喷管的欠膨胀度,使喷管从欠膨胀状态趋于过膨胀状态,采用侧重于后半部分散热的规律可以取得良好的调节效果。
- Abstract:
- One dimensional non-viscous theory is used to calculate the flow characteristics and performance of a divergent nozzle, and analyze the effect of wall surface heat dissipation and heat dissipation law on flowfield, exit dynamic parameters and performance parameters of the nozzle. The calculated results show that the wall surface heat dissipation may cause decrease of static pressure, static temperature and total temperature, but increase of exit Mach number and total pressure, and descend of the nozzle performance, and may result in, with gradual addition of heat dissipation, the nozzle will suffer from under-expansion and over-expansion, but its thrust coefficient becomes gradually decreased. Besides, the law of heat dissipation will have great influence on nozzle performance. The research result indicates when heat dissipating capacity is higher near inlet and lower near from under expansion to critical expansion. The heat dissipation from rear part of the nozzle can achieve a perfect adjusting effect.
参考文献/References:
[1]COCKRELL Charles E, Jr., AARON H. Aeroheating predictions for the X-43 Cowl-closed configuration at Mach 7 and 10, AIAA 2002-0218[R]. USA: AIAA, 2002.
[2]张堃元, 张荣学, 徐辉. 非对称大膨胀比喷管研究[J]. 推进技术, 2001, 22(5): 380-382.
[3]李念, 张堃元, 徐惊雷. 二维非对称喷管数值模拟与验证[J]. 航空动力学报, 2004, 19(6): 802-805.
[4]张艳慧, 徐惊雷, 张堃元. 超燃冲压发动机非对称喷管设计点性能研究[J]. 推进技术, 2007, 28(3): 282-286.
[5]谭杰, 金捷, 杜刚, 等. 单边膨胀喷管试验和数值模拟[J]. 航空动力学报, 2011, 26(6): 1221-1230.
[6]周正, 倪鸿礼, 贺旭照, 等. 基于Rao方法的二维单壁膨胀喷管优化设计[J]. 推进技术, 2009, 30(4): 451-456.
[7]卢鑫, 岳连捷, 肖雅彬, 等. 超燃冲压发动机尾喷管流线追踪设计[J]. 推进技术, 2011, 32(1): 91-95.
[8]卢鑫, 岳连捷, 肖雅彬, 等. 超燃冲压发动机三维变截面尾喷管设计[C]//第二届高超声速科技学术会议论文集. 无锡: 中科院力学所, 2010: 0035_1-0035_6.
[9]ELVIN J D. Integrated inward turning inlets and nozzles for hypersonic air vehicle[M]. USA: Patent Application Publication, 2007.
[10]高太元, 崔凯, 王秀平, 等. 三维后体/尾喷管一体化构型优化设计及性能分析[J]. 科学通报, 2012, 57(4): 239- 247.
[11]葛建辉, 徐惊雷, 庞丽娜, 等. Scramjet尾喷管几何调节方案的计算与实验研究[J]. 推进技术, 2013, 34(9): 1158-1164.
[12]赵强, 徐惊雷, 于洋. 基于膨胀度可控的SERN设计及
相似文献/References:
[1]徐学文,牟俊林,任建存,等.固体火箭发动机喷管瞬态流场特性分析[J].火箭推进,2015,41(05):49.
XU Xuewen,MU Junlin,REN Jiancun,et al.The analyses of transient flow-field
characteristics in the nozzle of SRM[J].Journal of Rocket Propulsion,2015,41(03):49.
[2]梁俊龙,张贵田,秦艳平.基于高阶WENO格式的喷管动态特性仿真分析[J].火箭推进,2015,41(04):29.
LIANG Junlong,ZHANG Guitian,QIN Yanping.Simulated analysis on nozzle dynamic characteristics
based on high-order WENO scheme[J].Journal of Rocket Propulsion,2015,41(03):29.
[3]韩 磊,何卫东.液体火箭发动机喷管冷却槽数字化加工技术[J].火箭推进,2014,40(04):57.
HAN Lei,HE Wei-dong.Digitization process technology of cooling grooves
on nozzle of liquid-propellant rocket engine[J].Journal of Rocket Propulsion,2014,40(03):57.
[4]邵松林.某发动机整机模态分析[J].火箭推进,2012,38(04):55.
SHAO Song-lin.Modal analysis of a rocket engine[J].Journal of Rocket Propulsion,2012,38(03):55.
[5]孙成,方杰,郑力铭,等.N20微推力器性能及喷管热结构分析[J].火箭推进,2008,34(05):5.
Sun Wei,Fang Jie,Zheng Liming,et al.N20 micro-thruster performance and
the nozzle thermo-structure analysis[J].Journal of Rocket Propulsion,2008,34(03):5.
[6]陈曦.喷管后段内壁铣槽加工工艺[J].火箭推进,2006,32(04):48.
Chen Xi.Milling groove machining of inner wall of nozzle extension[J].Journal of Rocket Propulsion,2006,32(03):48.
备注/Memo
收稿日期:2014-11-27;修回日期:2015-01-20 基金项目:国家863项目(2012AA702308) 作者简介:南向军(1985—),男,博士,研究领域为内流气体动力学