航天推进技术研究院主办
CHEN Ruida,XU Hui,CHEN Hongyu,et al.Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J].Journal of Rocket Propulsion,2023,49(04):17-25.
1.5 tf再生冷却液体火箭发动机关键技术与试验验证
- Title:
- Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling
- 文章编号:
- 1672-9374(2023)04-0017-09
- Keywords:
- liquid rocket engine; regenerative cooling; unlike impinging injector; additive manufacturing; hot-fire test verification
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 1.5 tf再生冷却液体火箭发动机用于我国载人登月新一代载人飞船主动力,具备高可靠、高比冲和多次点火启动等能力。头部采用多组喷注单元同心圆排列的直流互击式喷注器,身部燃烧室采用增材制造中逐层熔覆的激光选区熔化技术制备,喷管延伸段采用轻质C/SiC复合材料制备,两者通过螺栓、法兰连接和柔性石墨密封。采用再生冷却、液膜冷却和辐射冷却的组合热防护方式加强身部冷却效果,双密封联动的低流阻气动电磁阀控制推进剂流动。通过设计和工艺联合攻关,初步突破了高性能稳定燃烧和可靠冷却、再生冷却身部一体化增材制造、大尺寸复合材料喷管成形和连接等关键技术,通过了地面热试车和高空模拟热试车验证。发动机工作稳定,再生冷却温升裕度大,实测真空比冲为315.3 s,达到相同系统参数下国际先进水平,主要技术指标满足设计要求,为后续工程研制奠定了坚实的技术基础。
- Abstract:
- The 1.5 tf liquid rocket engine with regenerative cooling is used as the main power of China's next-generation manned spacecraft for manned lunar landing, which has the capability of high reliability, high specific impulse and multiple ignitions. The engine head is an unlike impinging injector with multiple injection units arranged in concentric circles. The combustion chamber is prepared by selective laser melting technology with layer-by-layer fusion in additive manufacturing, and the nozzle extension is prepared by lightweight C/SiC composite material, both of which are connected by bolts, flanges and flexible graphite seals. The combined thermal protection mode of regenerative cooling, liquid film cooling and radiation cooling is used to enhance the cooling effect of the body, and the propellant flow is controlled by the low flow resistance and double-seal linkage pneumatic solenoid valve. Through joint research on design and process, key technologies such as high-performance stable combustion and reliable cooling, integrated additive manufacturing of regenerative cooling body, forming and connecting large-size composite material nozzle have been preliminarily broken through, which have been verified by the ground thermal test and high-altitude simulation hot-fire test. The engine operates stably, with a large margin for regenerative cooling temperature rise. The measured vacuum specific impulse of the engine is 315.3 s, reaching the international advanced level under the same system parameters. The main technical indexes meet the design requirements, laying a solid technical foundation for the subsequent engineering development.
参考文献/References:
[1] 孙兴亮,高峰,董云冉,等.载人登月航天器推进系统方案选择分析[J].载人航天,2021,27(1):40-46.
[2] 彭坤,杨雷.利用地月间空间站的载人登月飞行模式分析[J].宇航学报,2018,39(5):471-481.
[3] 张智,徐洪平,邓新宇,等.新一代载人登月运载火箭总体方案和关键技术[J].载人航天,2022,28(4):427-432.
[4] 孙纪国,何学青,阳代军,等.大推力氢氧发动机关键制造技术[J].火箭推进,2022,48(2):117-126.
SUN J G,HE X Q,YANG D J,et al.Key manufacturing technology for large thrust LH2/LOx cycle engine[J].Journal of Rocket Propulsion,2022,48(2):117-126.
[5] 李斌,陈晖,马冬英,等.500 tf级液氧煤油高压补燃发动机研制进展[J].火箭推进,2022,48(2):1-10.
LI B,CHEN H,MA D Y,et al.Development of 500 tf class high pressure stage combustion LOx/kerosene rocket engine[J].Journal of Rocket Propulsion,2022,48(2):1-10.
[6] 丁兆波,刘倩,王天泰,等.220 t级补燃循环氢氧发动机推力室研制[J].火箭推进,2021,47(4):13-21.
DING Z B,LIU Q,WANG T T,et al.Development forthrust chamber of 220 t staged combustion cycle LOx/LH2 engine[J].Journal of Rocket Propulsion,2021,47(4):13-21.
[7] 张柏楠,杨庆,杨雷,等.我国新一代载人飞船及其研制进展[J].科学通报,2021,66(32):4065-4073.
[8] MELCHIOR A.A new bipropellant rocket engine for orbital maneuvering[C]//26th Joint Propulsion Conference.Reston,Virginia:AIAA,1990.
[9] STECHMAN C,LAWSON C.Historical evolution of the space shuttle primary and vernier reaction control rocket engine designs[C]//42nd AIAA/ASME/SAE/ASEE JointPropulsion Conference and Exhibit.Reston,Virginia:AIAA,2006.
[10] HALLBERG M,STENHOLM T.Laser welded sandwich manufacturing technology for nozzle extensions[C]//37th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2001.
[11] MEISS J H,JAEGER M,GRONOWSKI M,et al.Evolution and status of the orion-ESM propulsion subsystem[C]//AIAA SPACE 2016.Reston,Virginia:AIAA,2016.
[12] ELVERUM G,HOFFMAN A,MILLER J,et al.The descent engine for the lunar module[C]//3rd Propulsion Joint Specialist Conference.Reston,Virginia:AIAA,1967.
[13] FISHER S C,RAHMAN S A.Remembering the giants:Apollo rocket propulsion development[M].Washington,D C:National Aeronautics and Space Administration,2009.
[14] HOLSTEN H.Development of the Ariane 5 upper stage[J].Acta Astronautica,1993,29(2):117-120.
[15] SCHMIDT G,LANGEL G,ZEWEN H.The new European 27.5 kN engine for the Ariane 5 upper stage and the Hermes propulsion module[C]//25th Joint Propulsion Conference.Reston,Virginia:AIAA,1989.
[16] 叶胜,宁静,陈阳春.上面级动力系统发动机热控设计及验证[J].上海航天(中英文),2022,39(4):186-191.
[17] 孙鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(2):32-37.
SUN X,YANG C H.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(2):32-37.
[18] 徐辉,易琪,钟徐,等.10 kN双向摇摆再生冷却发动机技术研究[J].火箭推进,2009,35(5):8-12.
XU H,YI Q,ZHONG X,et al.Research on 10 kN gimbaled regeneratively cooled engine[J].Journal of Rocket Propulsion,2009,35(5):8-12.
[19] 陈明亮,刘昌国,徐辉,等.远征三号上面级轨控发动机研制及在轨验证[J].火箭推进,2020,46(3):11-18.
CHEN M L,LIU C G,XU H,et al.Development and in-orbit verification of orbit-control engine in YZ-3 upper stage[J].Journal of Rocket Propulsion,2020,46(3):11-18.
[20] 黄爱清,王立君,黄俊杰,等.气动式双密封控制阀:CN114215936A[P].2022-03-22.
[21] 徐辉,林庆国,汪允武,等.挤压式低室压推力室再生冷却问题[J].火箭推进,2006,32(6):12-15.
XU H,LIN Q G,WANG Y W,et al.Regenerative cooling of the pressure-fed thruster with low-pressure chamber[J].Journal of Rocket Propulsion,2006,32(6):12-15.
[22] 张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5):29-44.
[23] 刘彦杰,马武军,王松.陶瓷基复合材料火箭发动机推力室研究进展[J].宇航材料工艺,2007,37(4):1-4.
[24] 杨岩,王朝晖,李伟,等.氢氧发动机C/SiC复合材料喷管延伸段设计研究[J].载人航天,2020,26(3):368-373.
[25] 蒋进明,王松,李伟.先驱体浸渍裂解结合反应熔渗法制备Cf/ZrC-SiC复合材料[J].人工晶体学报,2013,42(4):692-694.
[26] 张守明,王松,陈朝辉.浸渍浆料对先驱体转化Cf/SiC复合材料结构及性能的影响[J].材料工程,2008,36(11):9-12.
[27] 王松,陈朝辉,李伟.不同碳纤维表面状态及其复合材料界面对比[J].稀有金属材料与工程,2007,36(S1):608-610.
[28] 陈明亮,徐辉,陈泓宇,等.火箭发动机复合材料喷管延伸段与短喷管推力室的新型连接结构:CN105888885B[P].2017-10-27.
[29] 陈明亮,刘犇,吴焕钟,等.喷管系统:CN108590890B[P].2019-12-06.
[30] 陈明亮,刘昌国,陈泓宇,等.火箭发动机推力室:CN110159456B[P].2020-07-14.
[31] 徐辉,金广明,陈锐达,等.发动机燃烧室与喷管延伸段的连接系统及其加工方法:CN114412667A[P].2022-04-29.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(04):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(04):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(04):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(04):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(04):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(04):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(04):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(04):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(04):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(04):15.
备注/Memo
收稿日期:2023-01-30; 修回日期:2023-02-07
基金项目:国家科技重大专项工程
作者简介:陈锐达(1995—),男,硕士,工程师,研究领域为空间液体火箭发动机设计。
通信作者:徐辉(1979—),女,硕士,研究员,研究领域为空间液体火箭发动机设计。