航天推进技术研究院主办
Xia Guangqing,Mao Genwang,Zhu Guoqiang,et al.Development history and current research status of the microwave electrothermal thruster in USA[J].Journal of Rocket Propulsion,2008,34(04):32-36.
美国微波电热推力器的发展历史与研究现状
- Title:
- Development history and current research status of the microwave electrothermal thruster in USA
- Keywords:
- space propulsion system; electric propulsion technology; microwave electrothermal thruster
- 分类号:
- V439.4
- 文献标志码:
- A
- 摘要:
- 概述了微波电热推力器(MET)的系统组成和工作原理。回顾了MET的发展历 程,重点介绍了美国MET的研究进展与现状、关键技术及其在潜在应用领域中的性能优势, 关键技术有微波谐振腔工作模式的选取和谐振腔结构的设计,并根据国外研究现状,提出了 国内微波电热推进的研究方向。
- Abstract:
- The system structure and working principle of microwave electrothermal thruster (MET)were briefly introduced and the development history of MET was reviewed.The current re— search status,key technologies and advantages of MET were emphatically indicated.The key tech— nologies of MET include the selection of microwave mode and the structure design of resonant cavity. According to foreign research status,the suggestions for developing MET were pointed.
参考文献/References:
[l]Whitehair S,Asmussen J,Nakanishi S.Microwave Eleetrothermal
Thruster Performance in Helium Gas[J].Journal
of Propulsion and Power,1987,3(2):136-144.
[2]Mieei M M.Prospects for Microwave Heated Propulsion
[R].AIAA 1984-1390.
[3]Sullivan D J,Micci M M.Performance Testing and Ex.
haust Plume Characterization of the Microwave Arcjet
Thruster[R].AIAA 1994—3 1 27.
[4]Sullivan D J,Kline J,Philippe C,et a1.Current Status of
the Microwave Arcjet Thruster[R].AIAA 1995—3065.
[5]5 John E.The Microwave Electro-Thermal(MEl)Thruster
Using Water Vapor Propellant[J].IEEE Transactions on
Plasma Science,2005,33(2):776-782.
[6]6 Chianese S G.Microwave Electrothermal Thruster Chamber
Temperature Measurements and Performance Calculations
[J].Joumal of Propulsion and Power,2006,22(1):3 1-37.
[7]Clemens D,Micci M,Bil6n S.Microwave Electrothermal
Thruster Using Simulated Hydrazine[R].AIAA 2006--5156.
[8]Balaam P'Micci M M.Investigation of Stabilized Resonant
Cavity Microwave Plasmas for Propulsion[J].Journal of
Propulsion and Power,1995,1 1(5):1021—1027.
[9]Souliez F J,Chianese S G,Dizac G H,et a1.Low—Power
Microwave Arcjet Testing:Plasma and Plume Diagnostics
and Performance
Evaluation.Micropropulsion for Small
Spacecraft[M].Progress in Astronautics and Aeronautics,
AIAA,Reston,VA,2000.
[10]Micci M M.History and Current Status of the Microwave
Electrothermal Thruster[C].2nd European Conference for
Aerospace Sciences(EUCASS).2007.
相似文献/References:
[1]陈 庆.空间推进系统可靠性评估方法的改进[J].火箭推进,2012,38(02):49.
CHEN Qing.Improvement of reliability assessment method for space propulsion system[J].Journal of Rocket Propulsion,2012,38(04):49.
[2]程 诚,熊靖宇,周国峰,等.NASA液氧甲烷集成推进系统热真空试验[J].火箭推进,2020,46(05):10.
CHENG Cheng,XIONG Jingyu,ZHOU Guofeng,et al.Thermal vacuum test of NASA’s integrated LO2/LCH4 propulsion system[J].Journal of Rocket Propulsion,2020,46(04):10.
[3]程诚,周海清,田桂,等.液氧/甲烷轨姿控推进系统集成演示试验[J].火箭推进,2023,49(03):56.
CHENG Cheng,ZHOU Haiqing,TIAN Gui,et al.System integration and hot-fire test of liquid oxygen/liquid methane rocket engine for orbit maneuver and attitude control[J].Journal of Rocket Propulsion,2023,49(04):56.
备注/Memo
收稿日期:2008-05—26;修回日期:2008-06~30。基金项目:国家自然科学基金项目(50676080)资助。 作者简介:夏广庆(1979一),男,中法联合指导博士生,研究领域为电推进。