航天推进技术研究院主办
SUN Xinfeng,WEN Xiaodong,ZHANG Tianping,et al.Research on high-power RF field reversed configuration plasma electromagnetic propulsion[J].Journal of Rocket Propulsion,2018,44(01):44-52.
大功率射频场反构型等离子体电推进研究
- Title:
- Research on high-power RF field reversed configuration plasma electromagnetic propulsion
- 文章编号:
- 1672-9374(2018)01-0044-09
- 关键词:
- 深空探测; 技术分析; 大功率场反等离子体推力器; 电磁推进
- Keywords:
- deep space exploration; technical analysis; FRC plasmas thruster; electromagnetic prolusion
- 分类号:
- V439-34
- 文献标志码:
- A
- 摘要:
- 大功率(MW级)射频场反构型等离子体电推进具有高比冲、长寿命、大推力和高效率的特点,是未来深空探测或空间货运极具竞争力和应用前景的电磁推进技术。针对国内外当前大功率推力器的研究进展,对比分析了场反构型等离子体推力器的独特优势,并对其结构和工作原理进行了介绍。从大功率射频场反构型等离子体电推进的磁拓扑结构优化设计、大功率脉冲电源技术和场反构型等离子体推力器的试验验证等角度分析了大功率场反构型等离子体电推进的关键技术。
- Abstract:
- With high specific impulse, large thrust, high efficiency and long lifetime, the MW level high-power plasma electromagnetic thruster with RF field reversed configuration has the extremely competitive power and application prospect in the fields of future deep space exploration and space freight.In this paper, the unique advantages of the field reversed configuration plasma thruster(FRCPT)are analyzed in detail according to the research progresses of current high-power thrusters at home and abroad.The structure and working principle of the FRCPT are introduced.The key technologies of high-power FRCPT are analyzed from the perspective of magnetic field topology optimization design, high pulse power supply technology and the experimental test verification.On the basis of these, the development trend of FRCPT is given, which will be useful for the research on FRCPT in China.
参考文献/References:
[1] MYERS R M. MPD Thruster technology, NASA technical memorandum 105242: AIAA-91-3568 [R]. USA: AIAA, 1991.
[2] LEV D. Investigation of efficiency in applied field magnetoplasmadynamic thrusters [D].US:Princeton University, 2012.
[3] WEGMANN T. Experimental investigation of steady state high power MPD thrusters: AIAA-92-3464 [R]. USA: AIAA, 1992.
[4] DÍAZ Chang. Development of the VASIMR engine laboratory [R]. Houston, TX: NASA JSC, 1999.
[5] SQUIRE Jared, CHANG DÍAZ F R, JACOBSON V T, et al. Experimental research progress toward the Vasimr engine [C]// Proceedings of 28th International Electric Propulsion Conference. Toulouse, France: [s.n.], 2003: 1-10.
[6] BERING E A. High power ion cyclotron heating in the VASIMR engine: AIAA-2007-586 [R]. Reno, Nevada: AIAA, 2007.
[7] SCOTT O C. Ion flux maps and helicon source efficiency in the VASIMR VX-100 experiment using a moving langmuir probe array [D]. Houston: Rice University, 2009.
[8] SQUIRE J P. VASIMR VX-200 operation at 200 kW and plume measurements: future plans and an ISS EP test platform: IEPC-2011-154 [R]. [S.l.]: IEPC, 2011.
[9] BROWN D L, BEAL B E., HAAS J M. Air force research laboratory high power electric propulsion technology development [C]// Proceedings of 2010 IEEE Aerospace Conference, Big Sky, MT, USA: IEEE, 2010: 111-120.
[10] 孙斌,30kW级磁等离子体发动机实验研究[C]//第十二届中国电推进技术研讨会,[S.l.]: [s.n.]2016.
[11] POLZIN K A. Comprehensive review of planar pulsed inductive plasma thruster research and technology [J]. Journal of propulsion and power, 2011(27): 513-531.
[12] FRISBEE R H, MIKELLIDES I G. The nuclear-electric pulsed inductive thruster(NuPIT)mission analysis for Prometheus: AIAA-2005-3892 [R]. USA: AIAA, 2005.
[13] 郭大伟,程谋森,脉冲气体供应阀电-机械转化器磁路结构设计分析[J],机械,2013(40):54-58.
[14] HILL C S. Translation studies on an annular field reversed configuration device for space population [D]. [S.l.]: Mechanical Engineering Technological University, 2012.
[15] PANCOTTI A P. Electrodeless lorentz force(ELF)thruster for ISRU and sample return mission: IEPC-2015-67 [R]. [S.l.]: IEPC, 2015.
[16] KIRTLEY D, SLOUGH J, PFAFF M, et al, Steady operation of an electromagnetic plasmoid thruster[C]// the 8th MSS/6th LPS/5th SPS Joint Subcommittee Meeting, JANNAF. [S.l.]: [s.n.], 2011: 123-129.
[17] SLOUGH John, KIRTLEY David WEBER Thomas. Pulsed plasmoid propulsion: The ELF thruster: IEPC-2009-265 [R]. [S.l.]: IEPC, 2009.
[18] CASAREGOLA C, CESARETTI C, ANDRENUCCI M. The European HiPER programme for future high power electric propulsion technologies: AIAA-2011-5515 [R]. USA: AIAA, 2011.
[19] 张天平,兰州空间技术物理研究所电推进进展,火箭推进,2015,41(2):7-12.
ZHANG Tianping,New progress of electric propulsion technology in LIP, Journal of rocket propulsion, 2015, 41(2):7-12.
[20] 杭观荣,康小路,电推进在深空探测主推进中的应用及发展趋势,2012,38(4):1-8.
HANG Guanrong, KANG Xiaolu, Application and development trends of electric propulsion in deep-space primary propulsion, Journal of rocket propulsion, 2012, 38(4):1-8
[21] KOO J, MARTIN R. High fidelity modeling of field reversed configuration(FRC)thrusters: AFRL-RQ-ED-TR-2017-0002 [R]. [S.l.]: AFRL, 2017.
相似文献/References:
[1]杭观荣,康小录.电推进在深空探测主推进中的应用及发展趋势[J].火箭推进,2012,38(04):1.
HANG Guan-rong,KANG Xiao-lu.Application and development trends of electric propulsion in deep-space primary propulsion[J].Journal of Rocket Propulsion,2012,38(01):1.
[2]谭永华.中国重型运载火箭动力系统研究[J].火箭推进,2011,37(01):1.
TAN Yong-hua.Research on power system of heavy launch vehicle in China[J].Journal of Rocket Propulsion,2011,37(01):1.
[3]陈健,曹永,陈君,等.太阳帆推进技术研究现状及其关键技术分析[J].火箭推进,2006,32(05):37.
Chen Jian,Cao Yong,Chen Jun.Current status of solar sail propulsion and analysis of its key techniques[J].Journal of Rocket Propulsion,2006,32(01):37.
[4]韩泉东,任建军,于杭健.国外深空探测推进技术发展及启示[J].火箭推进,2017,43(04):1.
HAN Quandong,REN Jianjun,et al.Development of propulsion technology abroad for
deep space exploration and its inspiration[J].Journal of Rocket Propulsion,2017,43(01):1.
备注/Memo
收稿日期:2017-10-15; 修回日期:2017-12-02 基金项目: 装备预研重点实验基金(61422070306); 国家自然科学基金(61701209) 作者简介: 孙新锋,男,博士,研究领域为空间电推进物理与技术