航天推进技术研究院主办
LIU Changbo,LIN Ge,SONG Daliang,et al.Experimental study on cooling characteristics of pintle thruster[J].Journal of Rocket Propulsion,2020,46(01):13-19.
针栓式推力室冷却特性试验研究
- Title:
- Experimental study on cooling characteristics of pintle thruster
- Keywords:
- pintle; thruster; cooling characteristics; thermal protection
- 分类号:
- V434.24文献标识码:A 文章编号:1672-9374(2020)01-0013-07
- 摘要:
- 针栓式发动机具有推力调节简单、声学燃烧稳定性好和成本低廉等一系列优点,但目前对针栓式推力室的冷却特性掌握还不够深入,研制过程中曾多次出现因推力室冷却组织不好而烧蚀的问题。采用针栓式推力室试验件,对身部的冷却特性进行了深入研究,结果表明:推力室圆柱段前端的温度较低,无需采用专门的冷却措施; 末端内侧气壁温度会达到约1 650 ℃,局部存在明显的烧蚀现象,必须采取有效的热防护措施; 下游冷却液膜量的变化对圆柱段的冷却特性影响较小。
- Abstract:
- Pintle engine has a series of advantages, such as simply thrust adjustment, good acoustic combustion stability, low cost, etc.However,the cooling characteristics are still unclear at present, and the ablating problem due to poor cooling structure of the thruster has occurred many times in the pintle engine development process.In this paper, a pintle thruster article was used to study the cooling characteristics of its body.The results show that, a)the temperature of the thruster pre-cylinder is lower and the usual steel can endure; b)the maximum inner wall temperature of the aft cylinder will reach about 1 650 ℃, and effective thermal protection measures must be taken since there are obvious ablation phenomena locally; c)the cooling characteristics are little affected by the downstream film flow rate.The research results of this paper are useful to optimize the thermal protection of the pintle thruster.
参考文献/References:
[1] ELVERUM J.Liquid propellant rocket engine coaxial injector:US,3699772[P].1972-102-4.
[2] CASIANO M J, HULKA J R, YANG V.Liquid-propellant rocket engine throttling:a comprehensive review[R].AIAA 2009-5135.
[3] DRESSLER G A, BAUER J M.TRW pintle engine heritage and performance characteristics[R].AIAA 2000-3871.
[4] ELVERUM G, STAUDHAMMER J P, MILLER J, et al.The descent engine for the lunar module[R].AIAA 1967-521.
[5] 刘昌波.针栓式喷注器雾化特性多尺度仿真研究[D].西安:中国航天科技集团公司第六研究院第十一研究所, 2014.
[6] SHIEBER K, RUPERT R C.Assurance of service life of the MIRA 150A varible thrust rocket engine[R].AIAA 1965-608.
[7] BOYD B, JOHNSON R, SMITH T.Application of the MIRA 150A variable thrust rocket engine to mannedlunar exploration flying systems[C]//3rd Propulsion Joint Specialist Conference.Washington, DC, USA.Reston, Virigina:AIAA, 1967.
[8] GILROY R,SACKHEIM R.The lunar module descent engine—a historical perspective[R].AIAA 1989-2385.
[9] DRESSLER G A.Summary of deep throttling rocket engines with emphasis on apollo LMDE[R].AIAA 2006-5220.
[10] CASIANO M J, HULKA J R, YANG V.Liquid-propellant rocket engine throttling:A comprehensive review[R].AIAA 2009-5135.
[11] HARDGROVE J, KRIEG H JR.High performance throttling and pulsing rocket engine[C]//20th Joint Propulsion Conference.Cincinnati, OH, USA.Reston, Virigina:AIAA, 1984.
[12] DRESSLER G A, STODDARD F J, GAVITT K R, et al.Test results from a simple, low-cost, pressure-fed liquid hydrogen/liquid oxygen rocket combustor[C]//JANNAF Propulsion Meeting.Monterey:AIAA,1993.
[13] MUELLER T, DRESSLER G.TRW 40 klbf LOX/RP-1 low cost pintle engine test results[R].AIAA 2000-3863.
[14] 安鹏, 姚世强, 王京丽, 等.针栓式喷注器的特点及设计方法[J].导弹与航天运载技术, 2016(3):50-54.
[15] TR-312-100MN high performance dual mode liquid apogee Engine[EB/OL].[2013-12-30].http://www.northropgrum man.com/Capabilities/PropulsionProductsandServices/Documents/TR-312MN_DMLAE.pdf.
[16] TR-312-100YN high performance dual mode liquid apogee engine[EB/OL].[2013-12-30].http://www.northrop-grumman.com/Capabilities/Propulsion Productsand Services/Documents/TR-312YN_DMLAE.pdf.
[17] CAPOZZOLI P, INSPRUCKER J, SHOTWELL G.The Falcon 9:A new EELV-class man-rated launch vehicle[C]//58th International Astronautical Congress.Hyderabad:IAC, 2007.
[18] BJELDE B, CAPOZZOLI P, SHOTWELL G.ThespaceX falcon 1 launch vehicle flight 3 results, future developments and falcon 9 evolution[C]//59th International Astronautical Congress.Glasgow, United Kingdom:IAC, 2008.
[19] DINARDI A, CAPOZZOLI P, SHOTWELL G.Lowcost launch opportunities provided by falcon family of launch vehicle[C]//The fourth Asian Space Conference 2008.Taibei, Taiwan:[s.n.],2008.
[20] 旷武岳.变推力液体火箭发动机的发展[C]//中国宇航学会液体火箭推进委员会第五届学术会议.西安:中国宇航学会,1990.
[20] 李进贤, 岳春国, 唐金兰, 等.变推力液体火箭发动机技术现状与发展探索[C]//中国宇航学会深空探测技术专业委员会第三届学术会议论文集.西安:中国宇航学会,2006.
[21] 章荣军, 林革, 李福云.变推力液体火箭发动机技术研究[C]//第五届液体火箭推进技术发展研讨会.三亚:中国宇航学会,2005.
[21] 李进贤, 岳春国, 唐金兰, 等.变推力液体火箭发动机技术现状与发展探索[C]//中国宇航学会深空探测技术专业委员会第三届学术会议论文集.西安:中国宇航学会,2006.
[22] 雷娟萍, 兰晓辉, 章荣军, 等.嫦娥三号探测器7500N变推力发动机研制[J].中国科学(技术科学), 2014, 44(6):569-575.
[23] 皮茨D,西索姆L.传热学[M].葛新石,译.北京:科学出版社, 2002.
[24] 刘国球.液体火箭发动机原理[M].北京:中国宇航出版社, 1993.
相似文献/References:
[1]韩长霖,田 原.某缩尺推力室燃烧和传热特性研究[J].火箭推进,2020,46(01):28.
HAN Changlin,TIAN Yuan.Study on combustion and heat transfer characteristics of a scaled trust chamber[J].Journal of Rocket Propulsion,2020,46(01):28.
[2]孔维鹏,谢恒.25t级氢氧膨胀循环发动机推力室氧腔流动仿真[J].火箭推进,2022,48(01):30.
KONG Weipeng,XIE Heng.Flow simulation of oxygen dome in thrust chamber of 25-ton LOX/LH2 expansion cycle rocket engine[J].Journal of Rocket Propulsion,2022,48(01):30.
[3]熊剑,肖虹,李龙飞,等.基于增材制造的液氧/煤油推力室喷注器分析[J].火箭推进,2023,49(04):60.
XIONG Jian,XIAO Hong,LI Longfei,et al.Analysis on LOx/RP-1 thrust chamber injector for additive manufacturing[J].Journal of Rocket Propulsion,2023,49(01):60.
[4]卞香港,李龙飞,王化余,等.基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J].火箭推进,2023,49(04):74.
BIAN Xianggang,LI Longfei,WANG Huayu,et al.Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J].Journal of Rocket Propulsion,2023,49(01):74.
[5]王凯,王东方,刘友强,等.变形高温合金在液体火箭发动机中的应用进展及展望[J].火箭推进,2024,50(01):57.[doi:10.3969/j.issn.1672-9374.2024.01.005]
WANG Kai,WANG Dongfang,LIU Youqiang,et al.Application and prospect of wrought superalloy in liquid rocket engine[J].Journal of Rocket Propulsion,2024,50(01):57.[doi:10.3969/j.issn.1672-9374.2024.01.005]
备注/Memo
收稿日期:2018-11-17; 修回日期:2019-02-11基金项目:国家自然科学基金(51606138)作者简介:刘昌波(1979—),男,博士,研究领域为液体火箭发动机系统