航天推进技术研究院主办
ZHANG Pengfei,JIA Shaofeng,XU Kaifu,et al.Comparative study on performance and strength of multi-stage turbine with aero-thermal coupling simulation[J].Journal of Rocket Propulsion,2020,46(01):76-82.
多级涡轮气热耦合仿真性能及强度对比研究
- Title:
- Comparative study on performance and strength of multi-stage turbine with aero-thermal coupling simulation
- Keywords:
- turbine disk; aero-thermal coupling; aerodynamic performance; structural strength; equivalent stress
- 分类号:
- V43文献标识码:A 文章编号:1672-9374(2020)01-0076-07
- 摘要:
- 航空航天发动机中,涡轮工作环境恶劣,承受流动传热耦合作用下强烈的热冲击,其结构强度问题十分突出。分别采用气动仿真和气热耦合仿真对某多级涡轮结构开展气动和强度性能仿真研究,提取相应的热边界条件进行涡轮盘结构强度有限元计算。结果表明:两种分析方法得到的涡轮气动性能十分接近,但涡轮盘表面的温度分布存在较大差异,计算得到的径向变形偏差达16%,等效应力偏差达50~100 MPa,气热耦合仿真结果更为可靠。
- Abstract:
- In aerospace engines, the working environment of the turbine is harsh andthe turbine bears strong thermal shock under the coupling effect of flow and heat transfer. Its structural strength problem is very serious. The aerodynamic and strength performance of a multi-stage turbine was studied with the aerodynamic simulation and aero-thermal coupling simulation, respectively. The thermal boundary conditions are extracted to perform the finite element simulation of the turbine disk. The results show that the aerodynamic performance of the turbine obtained by the two analysis methods is very close, but the temperature distribution on the surface of the turbine disk is quite different. The deviation of the calculated radial deformation reaches 16% and the equivalent stress deviation is up to 50~100 MPa. The results of the aero-thermal coupling simulation are more reliable.
参考文献/References:
[1] 叶大荣.某型发动机涡轮盘强度与疲劳寿命计算[J].航空发动机, 2006, 32(4):16-18.
[2] 刘涛, 邓强, 刘源, 等.某型航空发动机整体叶盘强度分析[J].机械研究与应用, 2015, 28(4):94-96.
[3] 宋文超, 陈英涛, 徐让书, 等.QD128燃气轮机动力涡轮盘组件温度场计算及静强度分析[J].燃气涡轮试验与研究, 2015, 28(6):45-48.
[4] 李钊, 邹武.某型发动机涡轮盘温度及应力计算分析[J].机械工程与自动化, 2014(3):122-124.
[5] 李朝阳, 张艳春, 何光新.燃气轮机涡轮盘温度及应力场计算分析[J].汽轮机技术, 2006, 48(1):7-10.
[6] 王洪军, 丁继贤, 庄铁柱.涡轮强度设计探索与研究[J].科技展望, 2014, 24(6):7-8.
[7] 林伟, 罗贵火, 王海涛.某微型航空发动机涡轮强度的计算分析[J].现代机械, 2009(4):5-6.
[8] 张艳春, 施丽铭, 李朝阳.燃气轮机涡轮盘结构应力有限元分析[J].燃气轮机技术, 2007, 20(3):46-49.
[9] 李水姣.某型燃气轮机低压涡轮盘强度分析[J].机械工程与自动化, 2012(5):37-39.
[10] 付广艳, 汪培军, 张静, 等.涡轮叶片和盘结构有限元建模及热力耦合分析[J].机械, 2016, 43(11):13-15.
[11] 李川, 王克明, 尹帮辉, 等.某型航空发动机低压涡轮盘的强度计算[J].沈阳航空工业学院学报, 2009, 26(4):1-4.
[12] 赵瑞勇, 陈晖, 刘军年, 等.基于流固耦合的部分进气涡轮数值模拟研究[J].火箭推进, 2015, 41(5):38-42.ZHAO R Y, CHEN H, LIU J N, et al.Numerical simulation method of partial admission turbine based on fluid-structure coupling[J].Journal of Rocket Propulsion, 2015, 41(5):38-42.
[13] 李洪武,关振群.有限元分析与CAE 技术基础[M].北京:清华大学出版社,2004.
[14] 张清, 郝勇, 霍枫, 等.民用大涵道比发动机叶尖间隙控制结构设计分析[J].沈阳航空航天大学学报, 2014, 31(2):14-19.
[15] 刘攀, 吴亚东, 杜朝辉.基于流固耦合的涡轮叶顶间隙分析研究[J].科学技术与工程, 2015, 15(27):84-89.
[16] 任众, 朱东华, 许开富.多场环境下涡轮盘的强度与振动安全性仿真优化研究[J].火箭推进, 2016, 42(6):36-42.REN Z, ZHU D H, XU K F.Multiphysics-based simulation and optimization on strength and vibration security of turbine disk[J].Journal of Rocket Propulsion, 2016, 42(6):36-42.
[17] 黄金娥.多场耦合下燃气轮机涡轮盘的寿命预估[J].舰船科学技术, 2018, 40(13):85-88.
[18] 叶炜.某型航空发动机的涡轮整体叶盘设计[J].现代机械, 2017(6):14-18.
[19] 王营,余朝蓬.航空发动机涡轮盘结构优化设计[J].机械设计与制造,2015(5):4-6.
[20] 陈智, 白广忱.涡轮盘结构可靠性与稳健性综合优化设计[J].航空发动机, 2012, 38(1):9-12.
相似文献/References:
[1]张权明,白周建.涡轮盘模锻质量稳定性分析[J].火箭推进,2009,35(04):44.
Zhang Quanming,Bai Zhoujian.Analysis Oil quality stability of turbine
disk die forging process[J].Journal of Rocket Propulsion,2009,35(01):44.
[2]张继桐,黄道琼,郭景录,等.由转速判断涡轮盘行波谐振[J].火箭推进,2005,31(03):14.
Zhang Jitong,Huang Daoqiong,Guo Jinglu.Turbine disk traveling-wave resonance identification by using rotation speed[J].Journal of Rocket Propulsion,2005,31(01):14.
[3]任众,朱东华,许开富.多场环境下涡轮盘的强度与振动安全性仿真优化研究[J].火箭推进,2016,42(06):36.
REN Zhong,ZHU Donghua,XU Kaifu.Multiphysics-based simulation and optimization on strength and vibration security of turbine disk[J].Journal of Rocket Propulsion,2016,42(01):36.
备注/Memo
收稿日期:2018-08-26; 修回日期:2019-05-12基金项目:国家863项目(2015AA7053026)作者简介:张鹏飞(1987—),男,博士,研究领域为液体火箭发动机涡轮泵设计