航天推进技术研究院主办
CHENG Cheng,XIONG Jingyu,ZHOU Guofeng,et al.Thermal vacuum test of NASA’s integrated LO2/LCH4 propulsion system[J].Journal of Rocket Propulsion,2020,46(05):10-20.
NASA液氧甲烷集成推进系统热真空试验
- Title:
- Thermal vacuum test of NASA’s integrated LO2/LCH4 propulsion system
- 文章编号:
- 1672-9374(2020)05-0010-11
- Keywords:
- space propulsion system; liquid oxygen/liquid methane; attitude control propulsion system; thermal vacuum simulation; electric spark ignition
- 分类号:
- V434.1
- 文献标志码:
- A
- 摘要:
- 为降低液氧/甲烷空间推进系统未来应用的技术风险,NASA先后实施了多个研究计划,持续不断地提升液氧/甲烷空间推进技术的成熟度水平。低温推进系统集成试验平台(ICPTA)顺利在梅溪试验站空间推进热真空舱内完成一系列热真空模拟环境下的集成热试车,标志着NASA液氧/甲烷轨姿控一体化推进技术已经具备了在轨飞行验证试验的条件。介绍了ICPTA的研制背景,采用的液氧/甲烷轨姿控一体化推进系统的构成、冷氦加温增压方案和供应管路热控方案。重点讨论了ICPTA热真空模拟试验的具体情况,以及变推力主发动机、姿控动力系统和COP点火系统等核心组件的设计方案、涉及的主要技术问题与试验结果,其成果对于未来星球着陆器的先进低温推进系统的研制具有重要参考价值。
- Abstract:
- In order to reduce the technical risk of liquid oxygen/liquid methane(LO2/LCH4)propulsion system for the future application, NASA has implemented several research projects to continuously improve the technology readiness level(TRL)of this cryogenic propulsion system.The Integrated Cryogenic Propulsion Test Article(ICPTA)has successfully completed a series of hot-fire tests in the space propulsion thermal vacuum chamber of Plum Brook station, NASA Glenn Research Center.It indicates that NASA’s integrated LO2/LCH4 propulsion technologies for the orbit and attitude control have the capability of in-orbit flight test.The development background of ICPTA, the composition of integrated LO2/LCH4 propulsion system, the cold helium system heating and pressurization scheme and thermal control method of feed lines are discussed in detail.Besides, the specific situation of the ICPTA thermal vacuum simulation test is mainly investigated, as well as the design principles, major technical issues and test results of the main engine, attitude control system and Coil-on-Plug ignition system.Its results are valuable for the advanced cryogenic propulsion system development of future planet lander.
参考文献/References:
[1] ANON.NASA’s exploration systems architecture study [R].NASA-TM-2005-214062, 2005.
[2] ISECG(International Space Exploration Coordination Group).The global exploration roadmap [R].NP-2018-01-2502-HQ G-327035, 2018.
[3] 程诚, 曲波, 林庆国.Morpheus液氧/甲烷一体化推进系统研究综述[J].火箭推进, 2018, 44(5): 1-9.
CHENG C, QU B, LIN Q G.Overview of integrated cryogenic propulsion system based on liquid oxygen/liquid methane for Morpheus[J].Journal of Rocket Propulsion, 2018, 44(5): 1-9.
[4] MARK D K.Liquid oxygen/liquid methane propulsion and cryogenic advanced development [R].IAC-11-C4.1.5, 2011.
[5] REYNOLDS D C.Oxygen/methane torch igniter design and testing [R].NASA TM-2008-215247, 2008.
[6] BREISACHER K, AJMANI K.LOX/methane main engine igniter tests and modeling [R].AIAA 2008-4757.
[7] ROBINSON P J, VEITH E M, LINNE D L, et al.Conceptual design of a 5,500-lbf LOX/LCH4 lunar ascent main engine [C]//4th JANNAF Liquid Propulsion Subcommittee Meeting.[S.l.]: JANNAF, 2008.
[8] ELAM S K.Test report for test program P7061: liquid oxygen/liquid methane demonstration with coaxial injectors [R].NASA TM-2009-215743.
[9] ELAM S K.LOX/LCH4 technology demonstration-P8006A [R].NASA TM-2009-216268.
[10] STIEGEMEIER B, WILLIAMS G, MELCHER J C, et al.Altitude testing of an ascent stage LOX/methane main engine [C]//5th JANNAF Liquid Propulsion Subcommittee Meeting.[S.l.]: JANNAF,2010.
[11] TRINIDAD M A, DRESSLER G A, STUDAK J W.An update on the development of NGC’s TR408: 100-lbf LOX/LCH4 reaction control engine [C]//4th JANNAF Liquid Propulsion Meeting.[S.l.]:AIAA, 2008.
[12] ROBINSON P J, VEITH E M, DAMICO S J, et al.Development summary of a 100-lbf LOX/LCH4 reaction control engine [C]//4th JANNAF Liquid Propulsion Meeting.[S.l.]: JANNAF, 2008.
[13] STIEGEMEIER B, MARSHALL W.Sea-level testing of a 100 lbf LOX/methane reaction control engine [C]//5th JANNAF Liquid Propulsion Subcommittee Meeting.[S.l.]: JANNAF, 2010.
[14] MARSHALL W, KLEINHENZ J.Hot-fire testing of 100 lbf LOX/LCH4 reaction control engine at altitude conditions [C]//5th JANNAF Liquid Propulsion Subcommittee Meeting.[S.l.]: JANNAF, 2010.
[15] BARSI S, MODER J, KASSEMI M.Numerical investigation of LO2 and LCH4 storage tanks on the lunar surface [R].AIAA 2008-4749.
[16] FLACHBART R H, HASTINGS L J, HEDAYAT A, et al.Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J].Cryogenics, 2008, 48(5/6): 217-222.
[17] ZIMMERLI G, ASIPAUSKAS M, WAGNER J, et al.Propellant quantity gauging using the radio frequency mass gauge [R].AIAA 2011-1320.
[18] JOHN M J, JOHN B M.Liquid acquisition device testing with sub-cooled liquid oxygen [R].AIAA 2008-4943.
[19] JURNS J M, MCQUILLEN J B, WEISEND J G, et al.Bubble point measurements with liquid methane of a screen capillary liquid acquisition device[C]//AIP Conference Proceedings.Chattanooga:AIP, 2008.
[20] JON B O, STEPHEN R M, JENNIFER L D.Project morpheus: lander technology development [R].AIAA 2014-4314.
[21] DEVOLITES J L, OLANSEN J B.Project Morpheus: tailored systems engineering of a terrestrial flight testbed for maturing NASA lander technologies[C]//AIAA Guidance, Navigation, and Control Conference.Kissimmee, Florida.Reston, Virginia: AIAA, 2015.
[22] JENNIFER L D, JON B O, STEPHEN R M.Project Morpheus: Morpheus 1.5A lander failure investigation results[R].AIAA 2013-5358.
[23] JON B O, STEPHEN R M, JENNIFER L D.Project Morpheus: lessons learned in lander technology development[R].AIAA 2013-5310.
[24] JON B O, STEPHEN R M, JENNIFER L D.Project Morpheus: lander technology development[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cleveland, OH.Reston, Virginia: AIAA, 2014.
[25] DEVOLITES J L, OLANSEN J B.Project Morpheus: tailored systems engineering of a terrestrial flight testbed for maturing NASA lander technologies[C]//AIAA Guidance, Navigation, and Control Conference.Kissimmee, Florida.Reston, Virginia: AIAA, 2015.
[26] ROBERT L M.Project Morpheus main engine development and preliminary flight testing[R].AIAA 2011-5927.
[27] MELCHER J C, MOREHEAD R L.Combustion stability characteristics of the project Morpheus liquid oxygen/liquid methane main engine[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cleveland, OH.Reston, Virginia: AIAA, 2014.
[28] HURLBERT E, MCMANAMEN J, STUDAK J.Advanced development of a compact 5-15 lbf lox/methane thruster for an integrated reaction control and main engine propulsion system[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.San Diego, California.Reston, Virigina: AIAA, 2011.
[29] MCMANAMEN J P, HURLBERT E A.Development and flight operation of a 5 lbf to 20 lbf O2/CH4 roll control engine for project Morpheus[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cleveland, OH.Reston, Virginia: AIAA, 2014.
[30] HURLBERT E A, ATWELL M J, MELCHER J C, et al.Integrated pressure-fed liquid oxygen/methane propulsion systems-Morpheus experience, MARE, and future applications[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.Salt Lake City, UT.Reston, Virginia: AIAA, 2016.
[31] MOREHEAD R L, ATWELL M J, MELCHER J C, et al.Cold helium pressurization for liquid oxygen/liquid methane propulsion systems: fully-integrated initial hot-fire test results[C]//52th AIAA/SAE/ASEE Joint Propulsion Conference.Salt Lake City, UT.Reston, Virginia: AIAA, 2016.
[32] MELCHER J C, ATWELL M J, MOREHEAD R L, et al.Coil-on-plug ignition for oxygen/methane liquid rocket engines in thermal-vacuum environments[C]//53th AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta, GA.Reston, Virginia: AIAA, 2017.
[33] ATWELL M J, MELCHER J C, HURLBERT E A, et al.Characterization of a pressure-fed liquid oxygen liquid methane reaction control system under simulated altitude and thermal vacuum conditions [C]//53th AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta, GA.Reston, Virginia: AIAA, 2017.
[34] MOREHEAD R L, MELCHER J C, ATWELL M J, et al.Vehicle-level oxygen/methane propulsion system hotfire demonstration at thermal vacuum conditions[C]//53th AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta, GA.Reston, Virginia: AIAA, 2017.
[35] JONES B K, ZANG J C, WEAVER H F, et al.NASA plum brook station test stand in-space propulsion facility test stand characterization hot fire test[C]//2018 Joint Propulsion Conference.Cincinnati, Ohio.Reston, Virginia: AIAA, 2018.
[36] 空天动力瞭望.美国私营登月器“新星-C”——首款全无毒深空飞行器 [EB/OL].[2019-11-06]https://mpweixin.qq.com/s/8AiGdjs8484rvRznxV1yww.
[37] Intuitive Machines, LLC.Lunar Payload & Service: Nova-C Lunar Lander [EB/QL].[2019-10-05] https://www.intuitivemachines.com/lunarlander#.
[38] TARA P P, THOMAS K P, MICHELLE R,et al.Update to Mars ascent vehicle design for human exploration[R].AIAA 2019-1229.
[39] TARA P P, HERBERT D T, TIM C, et al.Human mars ascent vehicle configuration and performance sensitivities[C]//53th AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta, GA.Reston, Virginia: AIAA, 2017.
[40] POLSGROVE T, PERCY T K, SUTHERLIN S, et al.Human Mars entry, descent, and landing architecture study: deployable decelerators[C]//2018 AIAA SPACE and Astronautics Forum and Exposition.Orlando, FL.Reston, Virginia: AIAA, 2018.
[41] WILLIAM M M, ROBIN J O, SANDRA E G.Development of augmented spark impinging igniter system for methane engines[C]//53th AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta, GA.Reston, Virginia: AIAA, 2017.
[42] MICHAEL B, CHIARA M, JUSTIN H, et al.Comparison of laser ignition and torch ignition in a subscale rocket combustor[R].AIAA 2018-4946.
[43] HILL G F, WEAVER H F, KUDLAC M T, et al.Space propulsion research facility(B-2): an innovative, multi-purpose test facility[R].NASA TM-2011-217007.
[44] MEYER M, DICKENS K, SKAFF T, et al.Performance of the spacecraft propulsion research facility during altitude firing tests of the Delta III upper stage[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Cleveland, OH, USA.Reston, Virigina: AIAA, 1998.
[45] GROESBECK W A, BAUD K W, LACOVIC R F, et al.Propulsion systems tests on a full scale centaur vehicle to investigate 3-burn mission capability of the D-1T configuration[R].NASA TM X-71511.
[46] JEFFREY M.Development of the X-33 GCH4/GO2, RCS thruster[R].AIAA 1999-2182.
[47] PHILIP J R, ERIC M V.Non-toxic dual thrust reaction control engine development for on-orbit APS applications[R].AIAA 2003-4925.
[48] JUDD D C, BUCCELLA S, ALKEMA M, et al.Development testing of a LOX/methane engine for in-space propulsion[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reno, Nevada.Reston, Virigina: AIAA, 2006.
[49] JUDD D, BUCCELLA S, ALKEMA M, et al.Effect of combustion process on performance, stability, and durability of a LOX/methane rocket engine[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reno, Nevada.Reston, Virigina: AIAA, 2006.
[50] TOMITA T, UEDA S, KAWASHIMA H, et al.Status of experimental research on high performance methane-fueled rocket thrust chamber[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.San Diego, California.Reston, Virigina: AIAA, 2011.
相似文献/References:
[1]陈 庆.空间推进系统可靠性评估方法的改进[J].火箭推进,2012,38(02):49.
CHEN Qing.Improvement of reliability assessment method for space propulsion system[J].Journal of Rocket Propulsion,2012,38(05):49.
[2]夏广庆,毛根旺,朱国强,等.美国微波电热推力器的发展历史与研究现状[J].火箭推进,2008,34(04):32.
Xia Guangqing,Mao Genwang,Zhu Guoqiang,et al.Development history and current research status of the
microwave electrothermal thruster in USA[J].Journal of Rocket Propulsion,2008,34(05):32.
[3]程诚,曲波,林庆国.Morpheus液氧/甲烷一体化推进系统研究综述[J].火箭推进,2018,44(05):1.
CHENG Cheng,QU Bo,et al.Overview of integrated cryogenic propulsion system based on liquid oxygen/liquid methane for Morpheus[J].Journal of Rocket Propulsion,2018,44(05):1.
[4]程诚,周海清,田桂,等.液氧/甲烷轨姿控推进系统集成演示试验[J].火箭推进,2023,49(03):56.
CHENG Cheng,ZHOU Haiqing,TIAN Gui,et al.System integration and hot-fire test of liquid oxygen/liquid methane rocket engine for orbit maneuver and attitude control[J].Journal of Rocket Propulsion,2023,49(05):56.
备注/Memo
收稿日期:2020-02-10; 修回日期:2020-03-14
基金项目:上海市空间发动机工程技术研究中心资助项目(17DI2280800)
作者简介:程诚(1987—),男,博士,高级工程师,研究领域为空间推进技术