航天推进技术研究院主办
DU Dahua,HUANG Daoqiong,HUANG Jinping,et al.Analysis on modal influence factors and vibration safety of rocket engine turbine disk[J].Journal of Rocket Propulsion,2021,47(01):21-28.
火箭发动机涡轮盘模态影响因素与振动安全性分析
- Title:
- Analysis on modal influence factors and vibration safety of rocket engine turbine disk
- 文章编号:
- 1672-9374(2021)01-0021-08
- 分类号:
- V434.2
- 文献标志码:
- A
- 摘要:
- 涡轮盘结构模态特性及振动安全性是对其进行动力学设计的基础。首先,在模态试验的基础上,建立了准确的涡轮盘结构动力学模型; 其次,开展多物理场作用下涡轮盘结构模态分析,研究轮盘工作时温度场、应力场及其耦合效应对模态特性的影响规律; 最后,对轮盘振动安全性进行评价,给出其振动安全裕度。研究表明,离心力的旋转“刚化”作用使得模态频率升高,温度效应引起结构刚度减小使得频率降低,气动力引起结构“软化”使得频率下降; 在力热综合作用下,对前6阶模态频率影响程度的大小顺序依次是转速、与温度相关的弹性模量、热应力及气动力,且气动力的影响可以忽略不计; 力热载荷影响模态频率,但不影响模态振型; 涡轮燃气激励起轮盘结构低阶节径模态行波耦合共振的可能性较小。
- Abstract:
- The modal characteristics and vibration safety of the turbine disk structure are the basis for its dynamics design. First, on the basis of the modal test, an accurate dynamic model of the disk was established. Secondly, the modal analysis was carried out under the effect of multi-physics field, which aimed at studying the influence of temperature field, stress field and coupling effect on the modal characteristics during the disk operating. Finally, the vibration safety of disk was evaluated to obtain its vibration safety margin. The research shows that, the rotational "stiffening" effect of centrifugal force increases the modal frequencies, the temperature effect causes the structural stiffness to decrease and the frequency to decrease, and the aerodynamic force causes the structure to "stiffening" and the frequency to reduce. Under the combined action of force and heat, the order of the degree of influence on the first 6-order modal frequencies are speed, temperature, elastic modulus, thermal stress and aerodynamic force, and the influence of aerodynamic force is negligible. The force and thermal load affect the modal frequency, but not the modal shape. Moreover, the possibility of low-order diameter modals traveling wave coupling resonance of the disk structure excited by turbine gas is very small.
参考文献/References:
[1] 陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效与预防[M].北京: 国防工业出版社,2001.
[2] 宋兆泓.航空发动机典型故障分析[M].北京: 北京航空航天大学出版社,1993.
[3] 何泽夏,李锋,孙秦,等.涡轮盘结构模态分析[J].机械强度,2006,28(6):927-930.
[4] LOUYOT M,NENNEMANN B,MONETTE C,et al.Modal analysis of a spinning disk in a dense fluid as a model for high head hydraulic turbines[J].Journal of Fluids and Structures,2020,94: 102965.
[5] 李春旺,李海云,王澈,等.航空发动机涡轮叶片振动模态影响因素研究[J].空军工程大学学报(自然科学版),2014,15(1):5-9.
[6] 纪科星,宋宏伟,黄晨光.温度场与应力场对主动冷却发动机振动模态的影响[C]// 第三届高超声速科技学术会议.无锡:[s.n.],2010.
[7]李惠彬,周鹂麟,孙恬恬,等.涡轮增压器叶轮流固耦合模态分析[J].振动、测试与诊断,2008, 28(3):252-255.
[8]陶海亮,郭宝亭,谭春青.基于气热固耦合的涡轮模态分析[J].振动、测试与诊断, 2012,32(6):941-944.
[9]WEDER M,HORISBERGER B,MONETTE C,et al.Experimental modal analysis of disk—like rotor—stator system coupled by viscous liquid[J].Journal of Fluids and Structures,2019,88: 198-215.
[10] HUNADY R,PAVELKA P,LENGVARSKY P.Vibration and modal analysis of a rotating disc using high—speed 3D digital image correlation[J].Mechanical Systems and Signal Processing,2019,121: 201-214.
[11] 张继桐,黄道琼,郭景录.由转速判断涡轮盘行波谐振[J].火箭推进,2005,31(3):14-22.
ZHANG J T,HUANG D Q,GUO J L.Turbine disk traveling—wave resonance identification by using rotation speed[J].Journal of Rocket Propulsion,2005,31(3):14-22.
[12] 任众,朱东华,许开富.多场环境下涡轮盘的强度与振动安全性仿真优化研究[J].火箭推进,2016,42(6):36-42.
REN Z,ZHU D H,XU K F.Multiphysics—based simulation and optimization on strength and vibration security of turbine disk[J].Journal of Rocket Propulsion,2016,42(6):36-42.
[13] SINGH M P,DROSJACK M J.Emerging advanced technologies to assess reliability of industrial steam turbine blade design [Z].
[14]HUANG W H.Free and forced vibration of closely coupled turbomachinery blades [R].AIAA 1980—0700,1980.
[15] 马跃,吴甜,孙新,等.轮盘—轴组件结合面螺栓等效刚度及其对动力学性能影响的研究[J].风机技术,2019,61(2):75-81.
[16] CHUANG Y T.Mass matrix updating for model validation [C]// Proceeding of the 15th International Modal Analysis Conference.Bethel: Society for Experimental Mechanics,1997.
[17] SHEN I Y.Closed—form forced response of a damped,rotating,multiple disks/spindle system[J].Journal of Applied Mechanics,1997,64(2):343-352.
[18] 晏砺堂,宋梓根,李基汉.高速旋转机械振动[M].北京: 国防工业出版社,1994.
[19] 张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京: 国防工业出版社,2001.
[20] 刘本武,王建军,隋雪冰.某型燃气轮机封严盘的结构优化[J]. 航空动力学报, 2014,29(3):563-570.
[21] 徐自力,艾松.叶片结构强度与振动[M].西安:西安交通大学出版社,2018.
[22] 郭秩维,曹航,马青超,等.叶盘耦合振动转/静子叶片数与节径数关系[J].航空动力学报,2019,34(1):99-105.
[23] DU D H,HE E M,HUANG D Q,et al.Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine[J].Journal of Sound and Vibration,2018,437: 53-67.
备注/Memo
收稿日期:2020-04-18
基金项目:国家级重点实验室基金项目(HTKJ2020KL011007); 陕西省创新能力支撑计划项目(18JK0813)
作者简介:杜大华(1977—),男,博士,研究员,研究领域为结构强度、振动与可靠性。