航天推进技术研究院主办
DING Zhaobo,LIU Qian,WANG Tiantai,et al.Development for thrust chamber of 220 t staged combustion cycle LOX/LH2 engine[J].Journal of Rocket Propulsion,2021,47(04):13-21.
220t级补燃循环氢氧发动机推力室研制
- Title:
- Development for thrust chamber of 220 t staged combustion cycle LOX/LH2 engine
- 文章编号:
- 1672-9374(2021)04-0013-09
- 分类号:
- V434.22
- 文献标志码:
- A
- 摘要:
- 推力室是220 t级高压补燃循环大推力氢氧发动机的核心部件,其技术提升幅度大,涉及关键技术多,攻关难度大。通过开展多方案对比分析、全面的数值仿真优化、缩尺热试验验证确定了大推力补燃循环氢氧发动机推力室的主要设计方案:喷注器采用四底三腔方案氧腔居中,燃烧效率高达99.7% 身部采用边区低混合比+气膜冷却+再生冷却的组合热防护方式,设计喉部最高气壁温为732 K 喷管上段采用铣槽内壁与外壁扩散钎焊的再生冷却方案 喷管下段采用高超音速气膜/辐射冷却方案。通过关键技术攻关初步突破了高效补燃喷注器、大流量推力室稳定燃烧、大热流身部热防护、高效率喷管造型、大尺寸高效再生冷却喷管、大尺寸单壁气膜/辐射冷却喷管等六项关键子技术,主要的技术指标能够满足设计的要求,为后续工程研制奠定了坚实的技术基础。
- Abstract:
- The thrust chamber was the core component of the 220 tons high-pressured staged combustion cycle high-thrust LOX/LH2 rocket engine,with many large technological improvements and key technologies which were difficult to tackle.Through the analysis of multiple design schemes,series numerical simulation optimizations,and scale hot tests,the schemes of the thrust chamber were well-established that the injector adopted four-bottom-three-cavities scheme with oxygen cavity in the middle,has combustion efficiency as high as 99.7%. The combustion chamber adopted the combined thermal protection scheme of low mixing ratio in border area,film cooling and regenerative cooling,with the designed maximum wall temperature of throat 732 K.The upper part of nozzle adopted the regenerative cooling scheme of diffusion brazing between outer wall and inner wall of milling groove.Hypersonic film / radiation cooling scheme was adopted in the lower part of the nozzle.The six key technologies of highly efficient staged combustion injector,combustion stability for high flow chamber,thermal protection for high heat flux combustion chamber,highly efficient nozzle style design,big efficient-regenerative cooling nozzle,big single-wall film cooling nozzle were broken through preliminarily by key technology research,the key technical indexes were consistent with the design demands,laying a solid technical foundation for the following project developments.
参考文献/References:
[1] 丁兆波,潘刚,牛旭东,等.高压补燃大推力氢氧发动机预燃室关键技术[J].导弹与航天运载技术,2020(4):39-44.
[2] RACHUK V,GONCHAROV N,MARTYNENKO Y,et al.Design,development,and history of the oxygen/hydrogen engine RD-0120[C]//31st Joint Propulsion Conference and Exhibit.San Diego,Virginia:AIAA,1995.
[3] 杨 V,安德松W E.液体火箭发动机燃烧不稳定性[M].张宝炯,译.北京:科学出版社,2001.
[4] 李龙飞,陈建华,刘站国.大推力液氧煤油补燃发动机高频燃烧不稳定性的控制方法[J].导弹与航天运载技术,2011,(3):16-19.
[5] 王枫,李龙飞,张贵田.喷嘴结构对液氧煤油火箭发动机高频燃烧不稳定性的影响[J].实验力学,2012,27(2):178-182.
[6] RICCIUS J,HAIDN O,ZAMETAEV E.Influence of time dependent effects on the estimated life time of liquid rocket combustion chamber walls[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Fort Lauderdale,Virginia:AIAA,2004.
[7] 朱森元.氢氧火箭发动机及其低温技术[M].北京:中国宇航出版社,2016:20-23.
[8] 丁兆波,孙纪国.推力室内壁热结构寿命预估及延寿技术研究[J].推进技术,2013,34(8):1088-1094.
[9] 韩长霖,田原.某缩尺推力室燃烧和传热特性研究[J].火箭推进,2020,46(1):28-34.
HAN C L,TIAN Y.Study on combustion and heat transfer characteristics of a scaled trust chamber[J].Journal of Rocket Propulsion,2020,46(1):28-34.
[10] FUKUSHIMA Y,NAKATSUZI H,NAGAO R,et al.Development status of le-7a and le-5b engines for h-iia family[J].Acta Astronautica,2002,50(5):275-284.
[11] 吴峰,王秋旺,罗来勤,等.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,20(4):707-712.
[12] 陈超群,徐旭.加热器喷管热-流耦合传热分析[J].北京航空航天大学学报,2010,36(5):592-595.
[13] 周伟.某膨胀循环发动机推力室冷却结构流场仿真分析[J].火箭推进,2015,41(2):63-69.
ZHOU W.Flow field simulation analysis of cooling configuration in thrust chamber of an expander cycle engine[J].Journal of Rocket Propulsion,2015,41(2):63-69.
[14] 周一鹏,朱定强.液体火箭发动机喷管壁面辐射热流的数值计算[J].火箭推进,2015,41(3):27-32.
ZHOU Y P,ZHU D Q.Numerical calculation of radiative heat flux on nozzle wall of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(3):27-32.
[15] 程圣清,宋连忠,王珏.氢氧火箭发动机预燃室喷注器特性研究[J].导弹与航天运载技术,1998(1):8-17.
[16] 丁兆波,孙纪国,路晓红.国外典型大推力氢氧发动机推力室技术方案综述[J].导弹与航天运载技术,2012(4):27-30.
[17] 郑孟伟,岳文龙,孙纪国,等.我国大推力氢氧发动机发展思考[J].宇航总体技术,2019,3(2):12-17.
[18] 郑大勇,陶瑞峰,张玺,等.大推力氢氧发动机关键技术及解决途径[J].火箭推进,2014,40(2):22-27.
ZHENG D Y,TAO R F,ZHANG X,et al.Study on key technology for large thrust LOX/LH2 rocket engine[J].Journal of Rocket Propulsion,2014,40(2):22-27.
[19] 唐亮,李平,周立新.液体火箭发动机液膜冷却研究综述[J].火箭推进,2020,46(1):1-12.
TANG L,LI P,ZHOU L X.Review on liquid film cooling of liquid rocket engine[J].Journal of Rocket Propulsion,2020,46(1):1-12.
[20] 孙永奇,李宝荣,杨建文.上面级发动机推力室喷管延伸段气膜冷却研究[J].火箭推进,2013,39(4):13-18.
SUN Y Q,LI B R,YANG J W.Research on gas film cooling at nozzle extension section of thrust chamber for upper stage engine[J].Journal of Rocket Propulsion,2013,39(4):13-18.
[21] GR?ING S,HARDI J,SUSLOV D,et al.Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen[J].CEAS Space Journal,2017,9(1):59-76.
备注/Memo
收稿日期:2020-11-17
基金项目:装备预研航天科技联合基金(6141B06207)
作者简介:丁兆波(1980—),男,博士,研究员,研究领域为液体火箭发动机燃烧装置设计。