航天推进技术研究院主办
TAN Yonghua,ZHAO Jian,ZHANG Wukun,et al.Innovative design method and application of liquid rocket engine integrated additive manufacturing[J].Journal of Rocket Propulsion,2023,49(04):1-16.
融合增材制造的液体火箭发动机创新设计方法与应用
- Title:
- Innovative design method and application of liquid rocket engine integrated additive manufacturing
- 文章编号:
- 1672-9374(2023)04-0001-16
- Keywords:
- liquid rocket engine; additive manufacturing; integrated innovative design; combined structural and functional performance; lightweight
- 分类号:
- V43
- 文献标志码:
- A
- 摘要:
- 增材制造技术在液体火箭发动机中应用的广度和深度不断增强。在发动机的设计层面,经历了由最初的“原位制造替代”到中间的“制造驱动设计”,再到“设计引领制造”3个设计理念阶段的变革。对融合增材制造的液体火箭发动机创新设计方法和准则进行了总结,包括结构优化设计技术、结构与功能一体化设计技术、复杂组件集成技术和基于增材制造工艺约束与材料性能的设计技术。以常平环和换热器等在发动机增材制造中应用很广泛的典型承载和热力组件为例,介绍了融合增材制造后产品的具体创新设计思路。对融合增材制造的液体火箭发动机创新设计方法和发展方向进行了总结与讨论。
- Abstract:
- The application of additive manufacturing(AM)technology in liquid rocket engine is increasingly extensive and deep. At the design level of the engine, it has undergone three design concept stages:from the initial “in-situ manufacturing substitution” to the “manufacturing-driven design”, and then to “design-led manufacturing”. The innovative design methods and criteria of liquid rocket engine for AM are summarized, including structural optimization design technology, structural and functional integration design technology, complex component integration technology and process constraints and material performance design technology based on AM.Taking some typical thermal and bearing components as examples, such as the gas generator injector, heat exchanger and so on, which are widely used in engine, the specific innovative design ideas of the product after combining AM are introduced. The innovative design methods and development directions of liquid rocket engine by AM are summarized and discussed.
参考文献/References:
[1] 谭永华.大推力液体火箭发动机研究[J].宇航学报,2013,34(10):1303-1308.
[2] 谭永华,杜飞平,陈建华,等.液氧煤油高压补燃循环发动机深度变推力系统方案研究[J].推进技术,2018,39(6):1201-1209.
[3] 李东,李平岐.长征五号火箭技术突破与中国运载火箭未来发展[J].航空学报,2022,43(10):527269.
[4] 杜飞平.航天液体动力关键技术研究进展与趋势[J].应用力学学报,2023,40(1):7-15.
[5] 张相盟,陈晖,高玉闪,等.500吨级液氧煤油发动机结构动态特性[J].火箭推进,2020,46(2):44-49.
ZHANG X M,CHEN H,GAO Y S,et al.Research on structural dynamic characteristics of the 500-ton LOx/kerosene rocket engine[J].Journal of Rocket Propulsion,2020,46(2):44-49.
[6] 李斌,闫松,杨宝锋.大推力液体火箭发动机结构中的力学问题[J].力学进展,2021,51(4):831-864.
[7] 卢秉恒.增材制造技术:现状与未来[J].中国机械工程,2020,31(1):19-23.
[8] NOURI A,ROHANI SHIRVAN A,LI Y C,et al.Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion:A review[J].Journal of Materials Science & Technology,2021,94:196-215.
[9] PHANDEN R K,SHARMA P,DUBEY A.A review on simulation in digital twin for aerospace,manufacturing and robotics[J].Materials Today:Proceedings,2021,38:174-178.
[10] 张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5):29-44.
[11] SEHARING A,AZMAN A H,ABDULLAH S.A review on integration of lightweight gradient lattice structures in additive manufacturing parts[J].Advances in Mechanical Engineering,2020,12(6):1-21.
[12] TIAN X Y,WU L L,GU D D,et al.Roadmap for additive manufacturing:Toward intellectualization and industrialization[J].Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022,1(1):100014.
[13] MOHD YUSUF S,CUTLER S,GAO N.Review:The impact of metal additive manufacturing on the aerospace industry[J].Metals,2019,9(12):1286.
[14] BLAKEY-MILNER B,GRADL P,SNEDDEN G,et al.Metal additive manufacturing in aerospace:A review[J].Materials & Design,2021,209:110008.
[15] TEPYLO N,HUANG X A,PATNAIK P C.Laser-based additive manufacturing technologies for aerospace applications[J].Advanced Engineering Materials,2019,21(11):1900617.
[16] URIONDO A,ESPERON-MIGUEZ M,PERINPANAYAGAM S.The present and future of additive manufacturing in the aerospace sector:A review of important aspects[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2015,229(11):2132-2147.
[17] GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148-158.
[18] GRADL P,MIRELES O.Additive manufacturing(AM)for propulsion component and system applications[Z].2021.
[19] PAPAGEORGIOU A,TARKIAN M,AMADORI K,et al.Multidisciplinary design optimization of aerial vehicles:A review of recent advancements[J].International Journal of Aerospace Engineering,2018,2018:1-21.
[20] ZHU L,LI N,CHILDS P R N.Light-weighting in aerospace component and system design[J].Propulsion and Power Research,2018,7(2):103-119.
[21] BRAGA D F O,TAVARES S M O,DA SILVA L F M,et al.Advanced design for lightweight structures:Review and prospects[J].Progress in Aerospace Sciences,2014,69:29-39.
[22] DABABNEH O,KIPOUROS T.A review of aircraft wing mass estimation methods[J].Aerospace Science and Technology,2018,72:256-266.
[23] CILIBERTI D,DELLA VECCHIA P,NICOLOSI F,et al.Aircraft directional stability and vertical tail design:A review of semi-empirical methods[J].Progress in Aerospace Sciences,2017,95:140-172.
[24] ZHU J H,ZHANG W H,XIA L.Topology optimization in aircraft and aerospace structures design[J].Archives of Computational Methods in Engineering,2016,23(4):595-622.
[25] LIU L,MA A J,LIU H Y,et al.Research progress of engineering structural optimization in aerospace field[C]//7th International Conference on Mechanical and Aerospace Engineering(ICMAE).London,UK:IEEE,2016.
[26] SEABRA M,AZEVEDO J,ARAU 'JO A,et al.Selective laser melting(SLM)and topology optimization for lighter aerospace componentes[J].Procedia Structural Integrity,2016,1:289-296.
[27] 朱继宏,周涵,王创,等.面向增材制造的拓扑优化技术发展现状与未来[J].航空制造技术,2020,63(10):24-38.
[28] 李佳霖,赵剑,孙直,等.基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计[J].力学学报,2022,54(1):244-251.
[29] 张允涛,薛杰,宋少伟,等.轨姿控发动机振动试验夹具结构拓扑优化[J].火箭推进,2023,49(1):93-102.
ZHANG Y T,XUE J,SONG S W,et al.Structural topology optimization of vibration test fixture for orbit and attitude control engines[J].Journal of Rocket Propulsion,2023,49(1):93-102.
[30] DONG G Y,TANG Y L,LI D W,et al.Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing[J].Additive Manufacturing,2020,33:101116.
[31] ZHANG C H,WU T,XU S Z,et al.Multiscale topology optimization for solid-lattice-void hybrid structures through an ordered multi-phase interpolation[J].Computer-Aided Design,2023,154:103424.
[32] TEIMOURI M,MAHBOD M,ASGARI M.Topology-optimized hybrid solid-lattice structures for efficient mechanical performance[J].Structures,2021,29:549-560.
[33] WANG C,ZHU J H,WU M Q,et al.Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J].Chinese Journal of Aeronautics,2021,34(5):386-398.
[34] LI Y,GAO T,ZHOU Q Y,et al.Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization[J].Chinese Journal of Aeronautics,2023,36(4):496-509.
[35] GU D D,SHI X Y,POPRAWE R,et al.Material-structure-performance integrated laser-metal additive manufacturing[J].Science,2021,372(6545):1487.
[36] ZHANG X Q,ZHANG K Q,ZHANG L,et al.Additive manufacturing of cellular ceramic structures:From structure to structure-function integration[J].Materials & Design,2022,215:110470.
[37] YUAN W Z.Development and application of high-end aerospace MEMS[J].Frontiers of Mechanical Engineering,2017,12(4):567-573.
[38] 张武昆,谭永华,高玉闪,等.周期性轻质多孔结构在能量吸收和振动方面的研究进展[J].振动与冲击,2023,42(8):1-19.
[39] 徐亮,谌清云,席雷,等.微类桁架点阵结构填充内冷通道的多目标优化设计[J].西安交通大学学报,2020,54(3):1-11.
[40] 王向明,苏亚东,吴斌,等.微桁架点阵结构在飞机结构/功能一体化中的应用[J].航空制造技术,2018,61(10):16-25.
[41] XIAO Y,WEN J H.Closed-form formulas for bandgap estimation and design of metastructures undergoing longitudinal or torsional vibration[J].Journal of Sound and Vibration,2020,485:115578.
[42] HAN B,ZHANG Z J,ZHANG Q C,et al.Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance[J].Extreme Mechanics Letters,2017,10:58-69.
[43] FAN J X,ZHANG L,WEI S S,et al.A review of additive manufacturing of metamaterials and developing trends[J].Materials Today,2021,50:303-328.
[44] PRAJAPATI M J,KUMAR A,LIN S C,et al.Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties[J].Additive Manufacturing,2022,54:102766.
[45] SAIRAJAN K K,AGLIETTI G S,MANI K M.A review of multifunctional structure technology for aerospace applications[J].Acta Astronautica,2016,120:30-42.
[46] GRADL P.Advancement of metal additive manufacturing techniques and materials for rocket propulsion applications[Z].2020.
[47] BARROQUEIRO B,ANDRADE-CAMPOS A,VALENTE R A F,et al.Metal additive manufacturing cycle in aerospace industry:A comprehensive review[J].Journal of Manufacturing and Materials Processing,2019,3(3):52.
[48] KERSTENS F,CERVONE A,GRADL P.End to end process evaluation for additively manufactured liquid rocket engine thrust chambers[J].Acta Astronautica,2021,182:454-465.
[49] 谷小军,李城彬,王文龙,等.拓扑优化与增材制造技术的融合及其在民用飞行器设计中的应用[J].航空制造技术,2022,65(14):14-20.
[50] 刘书田,李取浩,陈文炯,等.拓扑优化与增材制造结合:一种设计与制造一体化方法[J].航空制造技术,2017,60(10):26-31.
[51] ZHAO C,SHI B,CHEN S L,et al.Laser melting modes in metal powder bed fusion additive manufacturing[J].Reviews of Modern Physics,2022,94(4):045002.
[52] SANAEI N,FATEMI A.Defects in additive manufactured metals and their effect on fatigue performance:A state-of-the-art review[J].Progress in Materials Science,2021,117:100724.
[53] BECKER T H,KUMAR P,RAMAMURTY U.Fracture and fatigue in additively manufactured metals[J].Acta Materialia,2021,219:117240.
[54] 姜金朋,刘志超,刘筑,等.火箭发动机涡轮叶片疲劳寿命可靠性分析[J].火箭推进,2020,46(2):57-63.
JIANG J P,LIU Z C,LIU Z,et al.Reliability analysis of fatigue life for rocket engine turbine blade[J].Journal of Rocket Propulsion,2020,46(2):57-63.
[55] 杜大华,李斌.液体火箭发动机结构动力学设计关键技术综述[J].航空学报,2023,44(10):37-53.
[56] BLACHOWICZ T,EHRMANN G,EHRMANN A.Metal additive manufacturing for satellites and rockets[J].Applied Sciences,2021,11(24):12036.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(04):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(04):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(04):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(04):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(04):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(04):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(04):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(04):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(04):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(04):15.
[11]陈锐达,徐辉,陈泓宇,等.1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(04):17.
CHEN Ruida,XU Hui,CHEN Hongyu,et al.Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J].Journal of Rocket Propulsion,2023,49(04):17.
[12]孔维鹏,谢恒,王晓丽.基于激光选区熔化技术的大尺寸喷注器设计[J].火箭推进,2023,49(04):68.
KONG Weipeng,XIE Heng,WANG Xiaoli.Design of large dimensions injector based on selective laser melting technology[J].Journal of Rocket Propulsion,2023,49(04):68.
备注/Memo
收稿日期:2023-02-16; 修回日期:2023-04-08
基金项目:国家液体火箭发动机重点实验室基金项目(6142704220401,6142704210403,6142704220403)
作者简介:谭永华(1967—),男,博士,研究员,研究领域为液体火箭发动机技术。