基金项目:国家自然科学联合基金(u1737112)
作者简介:杨晓辉(1986—),男,博士,研究领域为超高温结构复合材料体系设计、制备工艺及其性能研究
为验证C/SiC复合材料喷嘴在液-固两相流实际环境中的应用可行性,采用化学气相沉积工艺和先驱体浸渍-裂解工艺制备了C/SiC复合材料喷嘴的,并充分结合工程化应用背景需求,对C/SiC复合材料喷嘴在实际应用环境中进行长寿命考核。基于C/SiC复合材料喷嘴在实际应用考核过程中表现出的冲蚀磨损特征,采用SEM手段分析了C/SiC复合材料喷嘴不同位置在液-固两相流中微观结构演变特点,并对其冲蚀磨损机理进行探讨。结果 表明:C/SiC复合材料喷嘴从试验件入口段到出口段表现出逐渐加剧的冲蚀磨损程度,冲蚀磨损方式主要由冲蚀凹坑和热应力“崩块”组成,而“偏磨”现象产生的主要原因为C/SiC复合材料各向异性和液-固两相流的不均匀性所致。
For validating application feasibility of C/SiC composite nozzle in the liquid-solid two phase flow in the actual environment, the C/SiC composite nozzle was fabricated by the chemical vapor deposition process and preceramic polymer impregnation pyrolysis process, combined with engineering application background of C/SiC composites nozzle. Long life assessment was also carried out in actual enviroment. Based on erosion wear characteristics of the C/SiC composites nozzles during the assessment process, SEM analysis was made used for the liquid-solid two-phase flow characteristic, microstructure evolution and the erosion wear mechanisms with different location of the nozzle. The results show that the C/SiC composite nozzle exhibits an increasing degree of erosion wear from the inlet end to the outlet section of the test piece. The erosion wear mode is mainly composed of erosion pit and thermal stress “crash”, and the main cause of the “biasing” phenomenon is the anisotropy of the C/SiC composite and the non-uniformity of the liquid-two-phase flow.