航天推进技术研究院主办
LIU Yangmin,TIAN Yuan,MA Zhiyu,et al.Analysis of design, performance and low-attitude operating boundary of common bell nozzle[J].Journal of Rocket Propulsion,2023,49(05):81-90.
常用钟型喷管造型、性能及低空使用边界分析
- Title:
- Analysis of design, performance and low-attitude operating boundary of common bell nozzle
- 文章编号:
- 1672-9374(2023)05-0081-10
- 分类号:
- V43
- 文献标志码:
- A
- 摘要:
- 使用无旋特征线法和拟抛物线公式对某地面启动喷管进行了设计,考虑了4种常用的钟型喷管型面,即最大推力喷管、最优抛物线喷管、截短理想喷管、压缩截短理想喷管。通过使用自编高效欧拉方程耦合附面层修正喷管流场求解器求解流场,得到喷管在绝热条件下的真空比冲、出口壁面压力等关键信息,然后使用FLUENT软件计算喷管的流动分离状态,进而比较了这4类常用的钟型喷管的性能和低空使用边界。结果表明,4类喷管在该设计条件下性能差距很小,但是抛物线喷管和压缩截短理想喷管均可通过调整型面来提高喷管出口壁面压力从而扩大喷管的可用面积比进而提高比冲。
- Abstract:
- A ground starting nozzle was designed by using the non-rotation characteristic line method and quasi-parabolic formula. Four common bell-shaped nozzles were considered, namely, maximum thrust nozzle, optimal parabolic nozzle, truncated ideal nozzle and compressed truncated ideal nozzle. By using a self-designed and efficient Euler equation coupled boundary layer modified nozzle flow field solver to solve the flow field, the key information of nozzle under the adiabatic condition such as vacuum specific impulse and outlet wall pressure were obtained. Then, the flow separation state of nozzle was calculated by FLUENT software, and the performance and low altitude operating boundary of these four commonly used bell nozzles were compared. The results show that the performance difference of the four types of nozzles is very small under the design condition, but both parabolic nozzle and compressed truncated ideal nozzle can improve the outlet wall pressure by adjusting the shape surface, thereby enlarging the available area ratio of nozzle and improving the specific impulse.
参考文献/References:
[1] 杨立军,富庆飞.液体火箭发动机推力室设计[M].北京:北京航空航天大学出版社,2013.
[2] ÖSTLUND J,MUHAMMAD K B.Supersonic flow separation with application to rocket engine nozzles[J].Applied Mechanics Reviews,2005,58(3):143-177.
[3] 叶正寅,吕广亮.火箭发动机喷管非定常侧向力和流固耦合研究进展[J].航空工程进展,2015,6(1):1-12.
[4] FREY M,HAGEMANN G,FREY M.Status of flow separation prediction in rocket nozzles[R].AIAA-2004-4162.
[5] MARTELLI E,NASUTI F,ONOFRI M.Numerical calculation of FSS/RSS transition in highly overexpanded rocket nozzle flows[J].Shock Waves,2010,20(2):139-146.
[6] RAO G R V.Exhaust nozzle contour for optimum thrust[J].Jet Propulsion,1985,28(6):377-382.
[7] RAO G R V.Approximation of optimum thrust nozzle contour[Z].1960.
[8] AHLBERG J H,HAMILTON S,MIGDAL D,et al.Truncated perfect nozzles in optimum nozzle design[J].ARS Journal,1961,31:614-620.
[9] HOFFMAN J.Design of compressed truncated perfect nozzles[EB/OL].https://www.semanticscholar.org/paper/Design-of-compressed-truncated-perfect-nozzles-Hoffman/782cd76e564677bcb46b6e8c6bb944b69a1f8c7d,1985.
[10] CHAN J,FREEMAN J A.Thrust chamber performance using Navier-Stokes solution[EB/OL].https://www.semanticscholar.org/paper/Thrust-chamber-performance-using-Navier-
Stokes-Chan-Freeman/48b965cd9503ada02a907b508f326
bb19114728b,2013.
[11] YANG V.Liquid rocket thrust chambers:Aspects of modeling,analysis,and design[M].Reston,Virginia:American Institute of Aeronautics and Astronautics,2004.
[12] LEE C,CHOI K,KIM C,et al.Computational investigations of side-loads in a thrust-optimized parabolic nozzle during high-altitude testing[C]//AIAA Scitech 2020 Forum.Reston,Virginia:AIAA,2020.
[13] TERHARDT M,HAGEMANN G,FREY M.Flow separation and side-load behavior of truncated ideal rocket nozzles[EB/OL].https://www.semanticscholar.org/paper/Flow-Separation-and-Side-Load-Behavior-of-Truncated-Ter
hardt-Hagemann/5ab6504ca2194d51277ef77ec09c2994d1
508db7,2001.
[14] TOMITA T,TAKAHASHI M,SASAKI M,et al.Experimental evaluation of side-loads in LE-7A prototype engine nozzle[J].Shock Waves,2009,19(3):213-228.
[15] FREY M,MAKOWKA K,AICHNER T.The TICTOP nozzle:A new nozzle contouring concept[J].CEAS Space Journal,2017,9(2):175-181.
[16] 刘亚洲,李平,陈宏玉,等.一种低空满流的大面积比液体火箭发动机喷管[J].推进技术,2022,43(10):205-212.
[17] 刘国球.液体火箭发动机原理[M].北京:中国宇航出版社,2005.
[18] 刘阳旻.液体火箭发动机喷管附面层求解器开发与应用[D].北京:中国运载火箭技术研究院,2021.
[19] NICKERSON G R,DANG L D,COATS D E,et al.Engineering and programming manual:Two-dimensional kinetic reference computer program[R].NAS8-35931.
[20] 孙得川,杨建文.液体火箭发动机喷管仿真模型[J].火箭推进,2022,48(2):56-65.
SUN D C,YANG J W.Nozzle simulation model of liquid rocket engine[J].Journal of Rocket Propulsion,2022,48(2):56-65.
[21] 丁煜朔.液体火箭发动机喷管型面设计与传热仿真分析研究[D].北京:中国运载火箭技术研究院,2019.
[22] ALLAMAPRABHU C,RAGHUNANDAN B,MORÍÑIGO J A.Improved prediction of flow separation in thrust optimized parabolic nozzles with FLUENT[EB/OL].https://www.semanticscholar.org/paper/Improved-Prediction-of-Flow-Separation-in-Thrust-Allamaprabhu-Raghunandan/37d0bbb64d667f39bcf1bb45861cad3ce22df16e,2011.
[23] NICKERSON G,DANG L.Performance predictions for an SSME configuration with an enlarged throat[EB/OL].https://www.semanticscholar.org/paper/Performance-predictions-for-an-SSME-configuration-Nickerson-Dang/b6
4e64ecff76d00df124ed8917bbd18f9e959f4c,1985.
[24] ZUCROW M J,HOFFMAN J D.Gas dynamics[M].New York:Wiley,1977.
相似文献/References:
[1]杨振宇,赵 杨,李光熙,等.1 mN射频离子推力器参数与性能分析[J].火箭推进,2020,46(03):75.
YANG Zhenyu,ZHAO Yang,LI Guangxi,et al.Parameters and performance analysis of 1 mN RF ion thruster[J].Journal of Rocket Propulsion,2020,46(05):75.
备注/Memo
收稿日期:2022-09-01; 修回日期:2023-01-03
基金项目:中国航天科技集团有限公司自主研发项目(010003000100050038)
作者简介:刘阳旻(1998—),男,硕士,助理工程师,研究领域为液体火箭发动机推力室设计。